\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{étale (infinity,1)-site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{tale_morphisms}{}\paragraph*{{\'E{}tale morphisms}}\label{tale_morphisms} [[!include etale morphisms - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AsDerivedGeometry}{Derived \'e{}tale geometry}\dotfill \pageref*{AsDerivedGeometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{\'e{}tale (∞,1)-site} is an [[(∞,1)-site]] whose [[(∞,1)-topos]] encodes the [[derived geometry]] version of the geometry encoded by the [[topos]] over the [[étale site]]. Its underlying [[(∞,1)-category]] is the [[opposite (∞,1)-category]] $sCAlg_k^{op}$ of commutative [[simplicial algebras]] over a commutative ring $k$, whose [[covering]] families are essentially those which under [[decategorification]] become coverings in the [[étale site]] of ordinary $k$-algebras. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $k$ be a commutative ring. Let $T$ be the [[Lawvere theory]] of commutative [[associative algebra]]s over $k$. \begin{defn} \label{}\hypertarget{}{} Let \begin{displaymath} \infty CAlg_k := T Alg_\infty \end{displaymath} be the [[(∞,1)-category]] of [[∞-algebra over an (∞,1)-algebraic theory|∞-algebras]] over $T$ regarded as an [[(∞,1)-algebraic theory]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} Let $sCAlg_k = (T Alg)^{\Delta^{op}}$ be the [[sSet]]-[[enriched category]] of [[simplicial algebra|simplicial commutative associative k-algebras]] equipped with the standard [[model structure on simplicial T-algebras]]. Write $sCAlg_k^\circ$ for the $(\infty,1)$-category [[presentable (∞,1)-category]]. Then we have an [[equivalence of (∞,1)-categories]] \begin{displaymath} \infty CAlg_k \simeq (sCAlg_k)^\circ \,. \end{displaymath} \end{prop} This is a special case of the general statement discussed at [[(∞,1)-algebraic theory]]. See also (\hyperlink{Lurie}{Lurie, remark 4.1.2}). \begin{defn} \label{}\hypertarget{}{} For $X \in \infty CAlg_k^{op}$ we write $\mathcal{O}(X)$ for the corresponding object in $\infty CAlg_k$ and conversely for $A \in \infty CAlg_k$ we write $Spec A$ for the corresponding object in $\infty CAlg_k^{op}$. So $Spec \mathcal{O} X = X$ and $\mathcal{O} Spec A = A$, by definition of notation. \end{defn} Notice from the discussion at [[model structure on simplicial algebras]] the [[homotopy group]] functor \begin{displaymath} \pi_* : sCAlg_k \to CAlg_k \,. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} A morphism $Spec A \to Spec B$ in $\infty CAlg_k^{op}$ is an \textbf{\'e{}tale morphism} if \begin{enumerate}% \item The underlying morphism $Spec \pi_0(A) \to Spec \pi_0(B)$ is an [[étale morphism]] of [[schemes]]; \item for each $i \in \mathbb{N}$ the canonical morphism \begin{displaymath} \pi_i(A) \otimes_{\pi_0(A)} \pi_0(B) \to \pi_i(B) \end{displaymath} is an [[isomorphism]]. \end{enumerate} \end{defn} \begin{defn} \label{}\hypertarget{}{} The \textbf{\'e{}tale $(\infty,1)$-site} is the [[(∞,1)-site]] whose underlying $(\infty,1)$-category is the [[opposite (∞,1)-category]] $\infty CAlg_k^{op}$ and whose [[covering]] famlies $\{Spec A_i \to Spec B\}_{i \in I}$ are those collections of morphisms such that \begin{enumerate}% \item every $Spec A_i \to Spec B$ is an \'e{}tale morphism \item there is a [[finite set|finite subset]] $J \subset I$ such that the underlying decategorified family $\{Spec \pi_0(A_j) \to Spec \pi_0(B)\}_{j \in J}$ is a covering family in the 1-[[étale site]]. \end{enumerate} \end{defn} This appears as (\hyperlink{ToenVezzosi}{To\"e{}nVezzosi, def. 2.2.2.12}) and as (\hyperlink{Lurie}{Lurie, def. 4.3.3; def. 4.3.13}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{AsDerivedGeometry}{}\subsubsection*{{Derived \'e{}tale geometry}}\label{AsDerivedGeometry} The following definition and theorem show how the \'e{}tale $(\infty,1)$-site arises naturally from the [[étale site|étale 1-site]], and naturally encodes the [[derived geometry]] induced by the \'e{}tale site. \begin{defn} \label{}\hypertarget{}{} \textbf{(\'e{}tale pregeometry)} Let $\mathcal{T}_{et}$ be the 1-[[étale site]] regarded as a [[pregeometry (for structured (∞,1)-toposes)]] as follows. \begin{itemize}% \item the underlying [[(∞,1)-category]] is the 1-[[category]] \begin{displaymath} (CAlg_k^{sm})^{op} \hookrightarrow CAlg_k ^{op} \,, \end{displaymath} which is the full [[subcategory]] of $CAlg_k$ on those objects $A \in CAlg_k$ for which there exists an [[étale morphism]] $k[x^1, \cdots, x^n] \to A$ from the [[polynomial]] algebra in $n$ generators for some $n \in \mathbb{N}$; \item the \emph{admissible morphisms} in the pregeometry are the [[étale morphism]]s; \item a collection of admissible morphisms is a [[covering]] family if it is so as a family of morphisms in the [[étale site]]. \end{itemize} \end{defn} This is (\hyperlink{Lurie}{Lurie, def. 4.3.1}). \begin{defn} \label{}\hypertarget{}{} \textbf{(\'e{}tale geometry)} Let $\mathcal{G}_{et}$ be the [[geometry (for structured (∞,1)-toposes)]] given by \begin{itemize}% \item the underlying [[(∞,1)-site]] is the \'e{}tale $(\infty,1)$-site; \item the admissible morphisms are the \'e{}tale morphisms. \end{itemize} \end{defn} This is (\hyperlink{Lurie}{Lurie, def. 4.3.13}). \begin{theorem} \label{}\hypertarget{}{} The [[geometry (for structured (∞,1)-toposes)|geometry]] generated by the \'e{}tale pregeometry $\mathcal{T}_{et}$ is the \'e{}tale geometry $\mathcal{G}_{et}$. \end{theorem} This is (\hyperlink{Lurie}{Lurie, prop. 4.3.15}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[étale morphism]], [[étale site]], [[étale cohomology]] \item [[étale morphism of E-∞ rings]] \item \textbf{\'e{}tale $(\infty,1)$-site} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} In its [[presentable (∞,1)-category|presentation]] as a [[model site]] the \'e{}tale $(\infty,1)$-site is given in definition 2.2.2.12 of \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{Homotopical Algebraic Geometry II: geometric stacks and applications} (\href{http://arxiv.org/abs/math/0404373}{arXiv}) . \end{itemize} A discussion in the context of [[structured (∞,1)-toposes]] is \begin{itemize}% \item [[Jacob Lurie]], section 4.3 of \emph{[[Structured Spaces]]} \end{itemize} \begin{itemize}% \item [[Jacob Lurie]], section 3 and 4 of, \emph{Descent theorems} (\href{http://www.math.harvard.edu/~lurie/papers/DAG-XI.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Benjamin Antieau]], [[David Gepner]], \emph{Brauer groups and \'e{}tale cohomology in derived algebraic geometry} (\href{http://arxiv.org/abs/1210.0290}{arXiv:1210.0290}) \end{itemize} [[!redirects étale (∞,1)-site]] [[!redirects etale (∞,1)-site]] [[!redirects etale (infinity,1)-site]] \end{document}