\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{étale cohomology} [[!redirects etale cohomology]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{tale_morphisms}{}\paragraph*{{\'E{}tale morphisms}}\label{tale_morphisms} [[!include etale morphisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{BasicProperties}{Basic properties}\dotfill \pageref*{BasicProperties} \linebreak \noindent\hyperlink{RelationZariskiEtaleCohomology}{Relation to Zariski cohomology}\dotfill \pageref*{RelationZariskiEtaleCohomology} \linebreak \noindent\hyperlink{WithCoefficientsInCoherentModules}{With coefficients in coherent modules}\dotfill \pageref*{WithCoefficientsInCoherentModules} \linebreak \noindent\hyperlink{WithCoefficientsInACyclicGroup}{With coefficients in a cyclic group}\dotfill \pageref*{WithCoefficientsInACyclicGroup} \linebreak \noindent\hyperlink{with_coefficients_in_the_multiplicative_group}{With coefficients in the multiplicative group}\dotfill \pageref*{with_coefficients_in_the_multiplicative_group} \linebreak \noindent\hyperlink{with_coefficients_in_groups_of_roots_of_unity}{With coefficients in groups of roots of unity}\dotfill \pageref*{with_coefficients_in_groups_of_roots_of_unity} \linebreak \noindent\hyperlink{MainTheorems}{Main theorems}\dotfill \pageref*{MainTheorems} \linebreak \noindent\hyperlink{proper_base_change_theorem}{Proper base change theorem}\dotfill \pageref*{proper_base_change_theorem} \linebreak \noindent\hyperlink{comparison_theorem_relation_to_singular_cohomology}{Comparison theorem: Relation to singular cohomology}\dotfill \pageref*{comparison_theorem_relation_to_singular_cohomology} \linebreak \noindent\hyperlink{KünnethFormula}{K\"u{}nneth formula}\dotfill \pageref*{KünnethFormula} \linebreak \noindent\hyperlink{CycleMap}{Cycle map}\dotfill \pageref*{CycleMap} \linebreak \noindent\hyperlink{PoincareDuality}{Poincar\'e{} duality}\dotfill \pageref*{PoincareDuality} \linebreak \noindent\hyperlink{lefschetz_fixedpoint_formula}{Lefschetz fixed-point formula}\dotfill \pageref*{lefschetz_fixedpoint_formula} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{history_motivation_and_original_accounts}{History, motivation and original accounts}\dotfill \pageref*{history_motivation_and_original_accounts} \linebreak \noindent\hyperlink{reviews_and_modern_accounts}{Reviews and modern accounts}\dotfill \pageref*{reviews_and_modern_accounts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Traditional \emph{\'e{}tale cohomology} (e.g. \hyperlink{Deligne77}{Deligne 77}) is the [[abelian sheaf cohomology]] for [[sheaf|sheaves]] on the [[étale site]] of a [[scheme]] -- which is an analog of the [[category of open subsets]] of a [[topological space]] $X$ , or rather the analog of the category of [[étale spaces]] over $X$, with [[finite set|finite]] [[fibers]]. A certain [[inverse limit]] over \'e{}tale cohomology groups for different [[coefficients]] yields [[ℓ-adic cohomology]], which is a [[Weil cohomology theory]]. More generally, there is \'e{}tale [[generalized cohomology theory]] with [[coefficients]] in [[sheaves of spectra]] on the [[étale site]] (\hyperlink{Jardine97}{Jardine 97}). Still more generally, there is \'e{}tale generalized cohomology on the [[étale (∞,1)-site]] (\hyperlink{AntieauGepner12}{Antieau-Gepner 12}, \hyperlink{Lurie}{Lurie}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{prop} \label{}\hypertarget{}{} Given a [[scheme]] $X$ of finite type, the small [[étale site]] $X_{et}$ is the [[category]] whose [[objects]] are [[étale morphisms]] $Spec R \to X$ and whose morphisms $(f:Spec R\to X)\to (f':Spec R'\to X)$ are morphisms $\alpha: Spec(R)\to Spec(R')$ of schemes completing triangles: $f'\circ\alpha=f$ (notice that the morphisms between \'e{}tale morphisms are automatically \'e{}tale). This category naturally carries a [[Grothendieck topology]] that makes it a [[site]], the [[étale site]]. For $A \in Sh(X_{et}, Ab)$ an [[abelian sheaf]] on $X$, the \textbf{\'e{}tale cohomology} $H_{et}^\bullet(X,A)$ of $X$ with [[coefficients]] in $A$ is the [[abelian sheaf cohomology]] with respect to this site. \end{prop} \hypertarget{BasicProperties}{}\subsection*{{Basic properties}}\label{BasicProperties} The following are some basic properties of \'e{}tale [[cohomology groups]] for various standard choices of [[coefficients]]. \hypertarget{RelationZariskiEtaleCohomology}{}\subsubsection*{{Relation to Zariski cohomology}}\label{RelationZariskiEtaleCohomology} \begin{remark} \label{}\hypertarget{}{} A [[cover]] in the [[Zariski topology]] on [[schemes]] is an [[open immersion of schemes]] and hence is in particular an [[étale morphism of schemes]]. Hence the [[étale site]] is finer than the [[Zariski site]] and so every \'e{}tale [[sheaf]] is a Zariski sheaf, but not necessarily conversely. \end{remark} \begin{remark} \label{LerayForInclusionOfZariskiIntoEtale}\hypertarget{LerayForInclusionOfZariskiIntoEtale}{} For $X$ a [[scheme]], the inclusion \begin{displaymath} \epsilon \;\colon\; X_{Zar} \longrightarrow X_{et} \end{displaymath} of the [[Zariski site]] into the [[étale site]] is indeed a [[morphism of sites]]. Hence there is a [[Leray spectral sequence]] which computes \'e{}tale cohomology in terms of Zariski cohomology \begin{displaymath} E^{p,q}_2 = H^p(X_{Zar}, R^q \epsilon^\ast \mathcal{F}) \Rightarrow E^{p+q} = H^{p+q}(X_{et}, \mathcal{F}) \,. \end{displaymath} \end{remark} This is originally due to ([[Grothendieck]], [[SGA]] 4 (Chapter VII, p355)). Reviews include (\hyperlink{Tamme}{Tamme, II 1.3}). \hypertarget{WithCoefficientsInCoherentModules}{}\subsubsection*{{With coefficients in coherent modules}}\label{WithCoefficientsInCoherentModules} \begin{prop} \label{CohomologyWithCoeffsInCoherentModules}\hypertarget{CohomologyWithCoeffsInCoherentModules}{} For $N$ a [[quasi-coherent sheaf]] of $\mathcal{O}_X$-[[modules]] and $N_{et}$ the induced \'e{}tale sheaf (by the discussion at \href{etale+topos#QuasiCoherentModules}{\'e{}tale topos -- Quasicohetent sheaves}), then the [[edge morphism]] \begin{displaymath} H^p_{Zar}(X, N) \longrightarrow H^p_{et}(X,N_{et}) \end{displaymath} of the [[Leray spectral sequence]] of remark \ref{LerayForInclusionOfZariskiIntoEtale} is an [[isomorphism]] for all $p$, itentifying the [[abelian sheaf cohomology]] on the [[Zariski site]] with [[coefficients]] in $N$ with the \'e{}tale cohomology with coefficients in $N_{et}$. Moreover, for $X$ affine we have \begin{displaymath} H^p_{et}(X, N_{et}) \simeq 0 \,. \end{displaymath} \end{prop} This is due to ([[Grothendieck]], [[FGA]] 1). See also for instance (\hyperlink{Tamme}{Tamme, II (4.1.2)}). \begin{proof} By the discussion at \emph{[[edge morphism]]} it suffices to show that \begin{displaymath} R^q \epsilon_\ast (N) = 0 \;\,,\;\;\; for \;\; p \gt 0 \,. \end{displaymath} By the discussion at \emph{[[direct image]]} (also at \emph{[[abelian sheaf cohomology]]}), $R^q \epsilon_\ast N$ is the [[sheaf]] on the [[Zariski topology]] which is the [[sheafification]] of the [[presheaf]] given by \begin{displaymath} U \mapsto H^q(X_{et}|U, N) \,, \end{displaymath} hence it is sufficient that this vanishes, or rather, by locality ([[sheafification]]) it suffices to show this vanishes for $X = U = Spec(A)$ an affine [[algebraic variety]]. By the existence of \href{etale+site#CofinalAffineCovers}{cofinal affine \'e{}tale covers} the [[full subcategory]] $X_{et}^{a} \hookrightarrow X_{at}$ with the induced [[coverage]] is a [[dense subsite]] of affines. Therefore it suffices to show the statement there. Moreover, by the finiteness condition on [[étale morphisms]] every cover of $X_{et}^{a}$ may be refined by a finite cover, hence by an affine covering map \begin{displaymath} Spec(B) \longrightarrow Spec(A) \,. \end{displaymath} It follows (by a discussion such as e.g. at [[Sweedler coring]]) that the corresponding [[Cech cohomology]] complex \begin{displaymath} N_{et}(Spec(A)) \to C^0(\{Spec(B) \to Spec(A)\}, N_{et}) \to C^1(\{Spec(B) \to Spec(A)\}, N_{et}) \to \cdots \end{displaymath} is of the form \begin{displaymath} 0 \to N \to N \otimes_A B \to N \otimes_{A} B \otimes_A B \to \cdots \,. \end{displaymath} known as the [[Amitsur complex]]. Since $A \to B$ is a [[faithfully flat morphism]] it follows by the [[descent theorem]] that this is [[exact sequence|exact]], hence that the cohomology indeed vanishes. \end{proof} \hypertarget{WithCoefficientsInACyclicGroup}{}\subsubsection*{{With coefficients in a cyclic group}}\label{WithCoefficientsInACyclicGroup} \begin{prop} \label{}\hypertarget{}{} If $X = Spec(A)$ is an affine [[reduced scheme]] of [[characteristic]] a [[prime number]] $p$, then its [[étale cohomology]] with [[coefficients]] in $\mathbb{Z}/p\mathbb{Z}$ is \begin{displaymath} H^q(X, (\mathbb{Z}/p\mathbb{Z})_X) \simeq \left\{ \itexarray{ A/(F - id)A & if\; q = 1 \\ 0 & if \; q \gt 0 } \right. \,. \end{displaymath} \end{prop} \begin{proof} Under the given assumptions, the [[Artin-Schreier sequence]] (see there) induces a [[long exact sequence in cohomology]] of the form \begin{displaymath} \begin{aligned} 0 & \to H^0(X_{et}, \mathbb{Z}/p\mathbb{Z}) \to H^0(X_{et}, \mathcal{O}_X) \stackrel{F-id}{\to} H^0(X_{et}, \mathcal{O}_X) \\ & \to H^1(X_{et}, \mathbb{Z}/p\mathbb{Z}) \to H^1(X_{et}, \mathcal{O}_X) \stackrel{F-id}{\to} H^1(X_{et}, \mathcal{O}_X) \\ & \to H^2(X_{et}, \mathbb{Z}/p\mathbb{Z}) \to H^2(X_{et}, \mathcal{O}_X) \stackrel{F-id}{\to} H^2(X_{et}, \mathcal{O}_X) \to \cdots \end{aligned} \,, \end{displaymath} where $F(-) = (-)^p$ is the [[Frobenius endomorphism]]. By prop. \ref{CohomologyWithCoeffsInCoherentModules} the terms of the form $H^{p \geq 1}(X, \mathcal{O}_X)$ vanish, and so from [[exact sequence|exactness]] we find an [[isomorphism]] \begin{displaymath} H^0(X_{et}, \mathcal{O}_X)/(F-id)(H^0(X_{et}, \mathcal{O}_X)) \stackrel{\simeq}{\to} H^1(X_{et}, \mathbb{Z}/p\mathbb{Z}) \,, \end{displaymath} hence the claimed isomorphism \begin{displaymath} A/(F-id)(A) \stackrel{\simeq}{\to} H^1(X_{et}, \mathbb{Z}/p\mathbb{Z}) \,. \end{displaymath} By the same argument all the higher cohomology groups vanish, as claimed. \end{proof} \hypertarget{with_coefficients_in_the_multiplicative_group}{}\subsubsection*{{With coefficients in the multiplicative group}}\label{with_coefficients_in_the_multiplicative_group} the \'e{}tale cohomology groups with [[coefficients]] in the [[multiplicative group]] $\mathbb{G}_m$ in the first few degrees go by special names: \begin{itemize}% \item $H^0_{et}(-, \mathbb{G}_m)$: [[group of units]]; \item $H^1_{et}(-, \mathbb{G}_m)$: [[Picard group]] ([[Hilbert's theorem 90]], \hyperlink{Tamme}{Tamme, II 4.3.1}); \item $H^2_{et}(-, \mathbb{G}_m)$: [[Brauer group]]; \end{itemize} \hypertarget{with_coefficients_in_groups_of_roots_of_unity}{}\subsubsection*{{With coefficients in groups of roots of unity}}\label{with_coefficients_in_groups_of_roots_of_unity} \begin{itemize}% \item [[Kummer sequence]] \end{itemize} (\hyperlink{Tamme}{Tamme, II, 4.4}) (\ldots{}) \hypertarget{MainTheorems}{}\subsection*{{Main theorems}}\label{MainTheorems} The following are the main theorems characterizing properties of \'e{}tale cohomology. Together these theorems imply that \'e{}tale cohomology, in its variant as [[l-adic cohomology]], is a [[Weil cohomology theory]]. \hypertarget{proper_base_change_theorem}{}\subsubsection*{{Proper base change theorem}}\label{proper_base_change_theorem} \begin{itemize}% \item [[proper base change theorem]] \end{itemize} (\hyperlink{Milne}{Milne, section 17}) \hypertarget{comparison_theorem_relation_to_singular_cohomology}{}\subsubsection*{{Comparison theorem: Relation to singular cohomology}}\label{comparison_theorem_relation_to_singular_cohomology} \begin{itemize}% \item [[comparison theorem (étale cohomology)]] \end{itemize} (\hyperlink{Milne}{Milne, section 21}) \hypertarget{KünnethFormula}{}\subsubsection*{{K\"u{}nneth formula}}\label{KünnethFormula} (\hyperlink{Milne}{Milne, section 22}) \hypertarget{CycleMap}{}\subsubsection*{{Cycle map}}\label{CycleMap} (\hyperlink{Milne}{Milne, section 23}) \hypertarget{PoincareDuality}{}\subsubsection*{{Poincar\'e{} duality}}\label{PoincareDuality} (\hyperlink{Milne}{Milne, section 24}) \hypertarget{lefschetz_fixedpoint_formula}{}\subsubsection*{{Lefschetz fixed-point formula}}\label{lefschetz_fixedpoint_formula} \hyperlink{KünnethFormula}{K\"u{}nneth formula} + \hyperlink{CycleMap}{cycle map} + \hyperlink{PoincareDuality}{Poincar\'e{} duality} $\Rightarrow$ [[Lefschetz fixed-point formula]] (\hyperlink{Milne}{Milne, section 25}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[basics of étale cohomology]] \item [[étale morphism]], [[étale site]], \'e{}tale cohomology \item [[étale (∞,1)-site]], [[étale topos]] \item [[étale homotopy]] \item [[Weil conjecture]] \item [[continuous étale cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{history_motivation_and_original_accounts}{}\subsubsection*{{History, motivation and original accounts}}\label{history_motivation_and_original_accounts} \'E{}tale cohomology was conceived by [[Artin]], [[Deligne]], [[Alexander Grothendieck|Grothendieck]] and [[Verdier]] in 1963. It was used by Deligne to prove the [[Weil conjectures]]. Some useful (and also funny) remarks on this are in the beginning of \begin{itemize}% \item [[Spencer Bloch]], Review of [[Milne]]`s \emph{[[Étale Cohomology]]} (\href{http://www.ams.org/bull/1981-04-02/S0273-0979-1981-14894-1/S0273-0979-1981-14894-1.pdf}{pdf}; publisher's \href{http://www.worldscibooks.com/mathematics/7773.html}{book page}) \end{itemize} See also \begin{itemize}% \item MathOverflow \emph{\href{http://mathoverflow.net/questions/6070/etale-cohomology-why-study-it}{\'E{}tale cohomology --- Why study it?}} \end{itemize} The classical references include [[SGA]], esp. \begin{itemize}% \item [[Pierre Deligne]] et al., \emph{Cohomologie \'e{}tale} , Lecture Notes in Mathematics \textbf{569}, Springer-Verlag, 1977. \end{itemize} \begin{itemize}% \item [[James Milne]], \emph{[[Étale Cohomology]]}, Princeton Mathematical Series \textbf{33}, 1980. xiii+323 pp. \end{itemize} See also \begin{itemize}% \item [[Barry Mazur]], \emph{Notes on \'e{}tale cohomology of number fields}, Annales scientifiques de l'\'E{}cole Normale Sup\'e{}rieure, S\'e{}r. 4, 6 no. 4 (1973), p. 521-552 (\href{http://www.numdam.org/item?id=ASENS_1973_4_6_4_521_0}{Numdam}, \href{http://modular.math.washington.edu/edu/2010/582e/refs/mazur-notes_on_etale_cohomology_of_number_fields_original.pdf}{pdf}) \end{itemize} \hypertarget{reviews_and_modern_accounts}{}\subsubsection*{{Reviews and modern accounts}}\label{reviews_and_modern_accounts} \begin{itemize}% \item [[Günter Tamme]], \emph{[[Introduction to Étale Cohomology]]}, 1994 \end{itemize} A modern textbook, though largely based on the material in SGA is \begin{itemize}% \item Lei Fu, \emph{\'E{}tale cohomology theory}, Nankai Tracts in Math. \textbf{13}, World Sci. 2011; (\href{http://www.worldscibooks.com/etextbook/7773/7773_toc.pdf}{toc pdf}; Preface \href{http://www.worldscibooks.com/etextbook/7773/7773_preface.pdf}{pdf}; chap. 1 Descent theory \href{http://www.worldscibooks.com/etextbook/7773/7773_chap01.pdf}{pdf}) \end{itemize} Lecture notes include \begin{itemize}% \item [[James Milne]], \emph{[[Lectures on Étale Cohomology]]} (\href{http://www.jmilne.org/math/CourseNotes/lec.html}{html}, \href{http://www.jmilne.org/math/CourseNotes/LEC.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Aise Johan de Jong]], \emph{\'E{}tale cohomology} 2009, in \emph{[[The Stacks Project]]} (\href{http://math.columbia.edu/~pugin/Teaching/Etale_files/EtaleCohomology.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Evan Jenkins]], \emph{\'E{}tale cohomology seminar} (\href{http://math.uchicago.edu/~ejenkins/etale/}{web}) \item Donu Arapura, \emph{An introduction to \'E{}tale cohomology} (\href{http://www.math.purdue.edu/~dvb/preprints/etale.pdf}{pdf}) \item Antoine Ducros, \emph{\'E{}tale cohomology of schemes and analytic spaces}, (\href{http://www.math.jussieu.fr/~ducros/Cohetale.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Edgar Costa, \emph{\'E{}tale cohomology} (\href{https://dspace.ist.utl.pt/bitstream/2295/686086/1/tese.pdf}{pdf}) \item Thomas H. Geisser, \emph{Weil-etale motivic cohomology}, \href{http://www.math.illinois.edu/K-theory/0565}{K-th archive} \end{itemize} Discussion of [[generalized cohomology theory]] on the [[étale site]] but with [[coefficients]] in [[sheaves of spectra]] is in \begin{itemize}% \item [[Rick Jardine]], \emph{Generalized \'E{}tale cohomology theories}, 1997 Progress in mathematics volume 146 \end{itemize} Discussion of generalized \'e{}tale cohomology over the [[étale (∞,1)-site]] (hence in [[higher topos theory]]/[[higher algebra]]) is in \begin{itemize}% \item [[Benjamin Antieau]], [[David Gepner]], \emph{Brauer groups and \'e{}tale cohomology in derived algebraic geometry} (\href{http://arxiv.org/abs/1210.0290}{arXiv:1210.0290}) \end{itemize} \begin{itemize}% \item [[Jacob Lurie]], \emph{Descent theorems} (\href{http://www.math.harvard.edu/~lurie/papers/DAG-XI.pdf}{pdf}) \end{itemize} [[!redirects étale cohomology]] [[!redirects generalized étale cohomology]] [[!redirects generalized étale cohomologies]] [[!redirects generalized etale cohomology]] [[!redirects generalized etale cohomologies]] \end{document}