\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{étale topos} [[!redirects etale topos]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{tale_morphisms}{}\paragraph*{{\'E{}tale morphisms}}\label{tale_morphisms} [[!include etale morphisms - contents]] \hypertarget{topos_theory_2}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory_2} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{EtaleToposOfAScheme}{\'E{}tale topos of a scheme}\dotfill \pageref*{EtaleToposOfAScheme} \linebreak \noindent\hyperlink{GeneralAbstract}{\'E{}tale topos of a differentially cohesive object}\dotfill \pageref*{GeneralAbstract} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SheafConditionAndExamples}{Sheaf condition and examples of \'e{}tale sheaves}\dotfill \pageref*{SheafConditionAndExamples} \linebreak \noindent\hyperlink{BaseChange}{Base change and sheaf cohomology}\dotfill \pageref*{BaseChange} \linebreak \noindent\hyperlink{QuasiCoherentModules}{Quasi-coherent modules}\dotfill \pageref*{QuasiCoherentModules} \linebreak \noindent\hyperlink{relation_to_zariski_topos}{Relation to Zariski topos}\dotfill \pageref*{relation_to_zariski_topos} \linebreak \noindent\hyperlink{as_a_classifying_topos}{As a classifying topos}\dotfill \pageref*{as_a_classifying_topos} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{etale_topos_of_a_schemes}{Etale topos of a schemes}\dotfill \pageref*{etale_topos_of_a_schemes} \linebreak \noindent\hyperlink{etale_topos_of_a_differentially_cohesive_object}{Etale topos of a differentially cohesive object}\dotfill \pageref*{etale_topos_of_a_differentially_cohesive_object} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In the context of the [[geometry]] of [[schemes]] there is a traditional notion of [[étale morphism of schemes]] and an \emph{\'e{}tale topos} is a [[category of sheaves]] on the [[étale site]] of a [[scheme]], consisting of [[covers]] by such [[étale morphism of schemes|étale morphisms]]. This traditional notion we discuss in \begin{itemize}% \item \hyperlink{EtaleToposOfAScheme}{\'E{}tale topos of a scheme}. \end{itemize} More abstractly, given that [[étale morphisms of schemes]] may be characterized as modal morphisms with respect to an [[infinitesimal shape modality]], one can consider \'e{}tale toposes in every context of [[differential cohesion]]. This we discuss in \begin{itemize}% \item \hyperlink{GeneralAbstract}{\'E{}tale topos of a differentially cohesive object} \end{itemize} \hypertarget{EtaleToposOfAScheme}{}\subsubsection*{{\'E{}tale topos of a scheme}}\label{EtaleToposOfAScheme} An \textbf{\'e{}tale topos} is the [[sheaf topos]] over an [[étale site]], hence over a site whose ``open subsets'' are [[étale morphisms]] into the base [[space]]. The intrinsic [[cohomology]] of an \'e{}tale [[(∞,1)-topos]] is \emph{[[étale cohomology]]}. More generally there is the pro-\'e{}tale topos over a [[pro-étale site]], which is a bit better behaved. In particular the intrinsic [[cohomology]] of a pro-\'e{}tale [[(∞,1)-topos]] includes the [[Weil cohomology theory]] [[ℓ-adic cohomology]]. Generally, given that an [[étale morphism of schemes]] is a [[formally étale morphism]] subject to a size constraint on its [[fibers]] -- for an actual [[étale morphism of schemes]] the fibers are [[finite sets]] in the suitable sense (formal duals to [[étale algebras]]) while for a [[pro-étale morphism of schemes]] they are [[pro-objects]] of such fibers -- in a suitable ambient context (``[[differential cohesion]]'') one can drop all finiteness conditions and consider just opens given by [[formally étale morphisms]] as encoded by an [[infinitesimal shape modality]]. This we discuss \hyperlink{GeneralAbstract}{below}. \hypertarget{GeneralAbstract}{}\subsubsection*{{\'E{}tale topos of a differentially cohesive object}}\label{GeneralAbstract} We discuss how in [[differential cohesion]] $\mathbf{H}_{th}$ every object $X$ canonically induces its \'e{}tale topos $Sh_{\mathbf{H}_{th}}(X)$. For $X \in \mathbf{H}_{th}$ any object in a [[differential cohesion|differential cohesive]] $\infty$-topos, we formulate \begin{enumerate}% \item the [[(∞,1)-topos]] denoted $\mathcal{X}$ or $Sh_\infty(X)$ of [[(∞,1)-sheaves]] over $X$, or rather of formally \'e{}tale maps into $X$; \item the [[structure (∞,1)-sheaf]] $\mathcal{O}_{X}$ of $X$. \end{enumerate} The resulting structure is essentially that discussed (\hyperlink{Lurie}{Lurie, Structured Spaces}) if we regard $\mathbf{H}_{th}$ equipped with its formally \'e{}tale morphisms, (\href{differential+cohesive+%28infinity%2C1%29-topos#FormallyEtaleInHTh}{def.}), as a ([[large category|large]]) [[geometry for structured (∞,1)-toposes]]. One way to motivate this is to consider structure sheaves of flat differential forms. To that end, let $G \in Grp(\mathbf{H}_{th})$ a differential cohesive [[∞-group]] with \href{cohesive+%28infinity,1%29-topos+--+structures#deRhamCohomology}{de Rham coefficient object} $\flat_{dR}\mathbf{B}G$ and for $X \in \mathbf{H}_{th}$ any differential homotopy type, the product projection \begin{displaymath} X \times \flat_{dR} \mathbf{B}G \to X \end{displaymath} regarded as an object of the [[slice (∞,1)-topos]] $(\mathbf{H}_{th})_{/X}$ \emph{almost} qualifies as a ``bundle of flat $\mathfrak{g}$-valued differential forms'' over $X$: for $U \to X$ an cover (a [[1-epimorphism]]) regarded in $(\mathbf{H}_{th})_{/X}$, a $U$-plot of this product projection is a $U$-plot of $X$ together with a flat $\mathfrak{g}$-valued de Rham cocycle on $X$. This is indeed what the sections of a corresponding bundle of differential forms over $X$ are supposed to look like -- but only \emph{if} $U \to X$ is sufficiently \emph{spread out} over $X$, hence sufficiently [[étale map|étale]]. Because, on the extreme, if $X$ is the point (the [[terminal object]]), then there should be no non-trivial section of differential forms relative to $U$ over $X$, but the above product projection instead reproduces all the sections of $\flat_{dR} \mathbf{B}G$. In order to obtain the correct cotangent-like bundle from the product with the de Rham coefficient object, it needs to be \emph{restricted} to plots out of suficiently \'e{}tale maps into $X$. In order to correctly test differential form data, ``suitable'' here should be ``formally'', namely infinitesimally. Hence the restriction should be along the full inclusion \begin{displaymath} (\mathbf{H}_{th})_{/X}^{fet} \hookrightarrow (\mathbf{H}_{th})_{/X} \end{displaymath} of the formally \'e{}tale maps (see \href{differential+cohesive+%28infinity%2C1%29-topos#FormallyEtaleInHTh}{def.}) into $X$. Since on formally \'e{}tale covers the sections should be those given by $\flat_{dR}\mathbf{B}G$, one finds that the corresponding ``cotangent bundle'' must be the [[coreflective subcategory|coreflection]] along this inclusion. The following proposition establishes that this coreflection indeed exists. \begin{defn} \label{EtaleSlice}\hypertarget{EtaleSlice}{} For $X \in \mathbf{H}_{th}$ any object, write \begin{displaymath} (\mathbf{H}_{th})^{fet}_{/X} \hookrightarrow (\mathbf{H}_{th})_{/X} \end{displaymath} for the full [[sub-(∞,1)-category]] of the [[slice (∞,1)-topos]] over $X$ on those maps into $X$ which are formally \'e{}tale, (see \href{differential+cohesive+%28infinity%2C1%29-topos#FormallyEtaleInHTh}{def.}). We also write $FEt_{\mathbf{X}}$ or $Sh_{\mathbf{H}}(X)$ for $(\mathbf{H}_{th})_{/X}^{fet}$. \end{defn} \begin{prop} \label{EtalificationIsCoreflection}\hypertarget{EtalificationIsCoreflection}{} The inclusion $\iota$ of def. \ref{EtaleSlice} is both [[reflective sub-(∞,1)-category|reflective]] as well as [[coreflective subcategory|coreflective]], hence it fits into an [[adjoint triple]] of the form \begin{displaymath} (\mathbf{H}_{th})_{/X}^{fet} \stackrel{\overset{L}{\leftarrow}}{\stackrel{\overset{\iota}{\hookrightarrow}}{\underset{Et}{\leftarrow}}} (\mathbf{H}_{th})_{/X} \,. \end{displaymath} \end{prop} \begin{proof} By the general discussion at \emph{[[reflective factorization system]]}, the reflection is given by sending a morphism $f \colon Y \to X$ to $X \times_{\mathbf{\Pi}_{inf}(X)} \mathbf{\Pi}_{inf}(Y) \to Y$ and the reflection unit is the left horizontal morphism in \begin{displaymath} \itexarray{ Y &\to& X \times_{\mathbf{\Pi}_{inf}(Y)} \mathbf{\Pi}_{inf}(Y) &\to& \mathbf{\Pi}_{inf}(Y) \\ & \searrow & \downarrow^{} && \downarrow^{\mathrlap{\mathbf{\Pi}_{inf}(f)}} \\ && X &\to& \mathbf{\Pi}_{inf}(X) } \,. \end{displaymath} Therefore $(\mathbf{H}_{th})_{/X}^{fet}$, being a reflective subcategory of a [[locally presentable (∞,1)-category]], is (as discussed there) itself locally presentable. Hence by the [[adjoint (∞,1)-functor theorem]] it is now sufficient to show that the inclusion preserves all small [[(∞,1)-colimits]] in order to conclude that it also has a right [[adjoint (∞,1)-functor]]. So consider any [[diagram]] [[(∞,1)-functor]] $I \to (\mathbf{H}_{th})_{/X}^{fet}$ out of a [[small (∞,1)-category]]. Since the inclusion of $(\mathbf{H}_{th})_{/X}^{fet}$ is full, it is sufficient to show that the $(\infty,1)$-colimit over this diagram taken in $(\mathbf{H}_{th})_{/X}$ lands again in $(\mathbf{H}_{th})_{/X}^{fet}$ in order to have that $(\infty,1)$-colimits are preserved by the inclusion. Moreover, colimits in a slice of $\mathbf{H}_{th}$ are computed in $\mathbf{H}_{th}$ itself (this is discussed at \emph{\href{overcategory#LimitsAndColimits}{slice category - Colimits}}). Therefore we are reduced to showing that the square \begin{displaymath} \itexarray{ \underset{\to_i}{\lim} Y_i &\to& \mathbf{\Pi}_{inf} \underset{\to_i}{\lim} Y_i \\ \downarrow && \downarrow \\ X &\to& \mathbf{\Pi}_{inf}(X) } \end{displaymath} is an [[(∞,1)-pullback]] square. But since $\mathbf{\Pi}_{inf}$ is a [[left adjoint]] it commutes with the $(\infty,1)$-colimit on objects and hence this diagram is equivalent to \begin{displaymath} \itexarray{ \underset{\to_i}{\lim} Y_i &\to& \underset{\to_i}{\lim} \mathbf{\Pi}_{inf} Y_i \\ \downarrow && \downarrow \\ X &\to& \mathbf{\Pi}_{inf}(X) } \,. \end{displaymath} This diagram is now indeed an [[(∞,1)-pullback]] by the fact that we have [[universal colimits]] in the [[(∞,1)-topos]] $\mathbf{H}_{th}$, hence that on the left the component $Y_i$ for each $i \in I$ is the [[(∞,1)-pullback]] of $\mathbf{\Pi}_{inf}(Y_i) \to \mathbf{\Pi}_{inf}(X)$, by assumption that we are taking an $(\infty,1)$-colimit over formally \'e{}tale morphisms. \end{proof} \begin{prop} \label{}\hypertarget{}{} The $\infty$-category $(\mathbf{H}_{th})_{/X}^{fet}$ is an [[(∞,1)-topos]] and the canonical inclusion into $(\mathbf{H}_{th})_{/X}$ is a [[geometric embedding]]. \end{prop} \begin{proof} By prop. \ref{EtalificationIsCoreflection} the inclusion $(\mathbf{H}_{th})_{/X}^{fet} \hookrightarrow (\mathbf{H}_{th})_{/X}$ is [[reflective sub-(infinity,1)-category|reflective]] with reflector given by the $(\mathbf{\Pi}_{inf}-equivalences , \mathbf{\Pi}_{inf}-closed)$ factorization system. Since $\mathbf{\Pi}_{inf}$ is a [[right adjoint]] and hence in particular preserves [[(∞,1)-pullbacks]], the $\mathbf{\Pi}_{inf}$-equivalences are stable under pullbacks. By the discussion at \emph{[[stable factorization system]]} this is the case precisely if the corresponding reflector preserves [[finite (∞,1)-limits]]. Hence the embedding is a [[geometric embedding]] which exhibits a [[sub-(∞,1)-topos]] inclusion. \end{proof} \begin{defn} \label{TheStructureSheafOfX}\hypertarget{TheStructureSheafOfX}{} For $X \in \mathbf{H}_{th}$ we speak of \begin{displaymath} \mathcal{X} \coloneqq Sh_{\mathbf{H}_{th}}(X) \coloneqq (\mathbf{H}_{th})_{/X}^{fet} \end{displaymath} also as the ([[petit (∞,1)-topos|petit]]) [[(∞,1)-topos]] of $X$, or the \textbf{\'e{}tale topos} of $X$. Write \begin{displaymath} \mathcal{O}_X \colon \mathbf{H}_{th} \stackrel{(-) \times X}{\to} (\mathbf{H}_{th})_{/X} \stackrel{Et}{\to} (\mathbf{H}_{th})_{/X}^{fet} \end{displaymath} for the composite [[(∞,1)-functor]] that sends any $A \in \mathbf{H}_{th}$ to the etalification, prop. \ref{EtalificationIsCoreflection}, of the projection $A \times X \to X$. We call $\mathcal{O}_X$ the \textbf{[[structure sheaf]]} of $X$. \end{defn} \begin{remark} \label{}\hypertarget{}{} For $X, A \in \mathbf{H}_{th}$ and for $U \to X$ a [[formally étale morphism]] in $\mathbf{H}_{th}$ (hence like an [[open subset]] of $X$), we have that \begin{displaymath} \begin{aligned} \mathcal{O}_{X}(A)(U) & \coloneqq Sh_{\mathbf{H}_{th}}(X)( U , \mathcal{O}_{X}(A) ) \\ & \coloneqq Sh_{\mathbf{H}_{th}}(X)( U , Et(X \times A) ) \\ & \simeq (\mathbf{H}_{th})_{/X}(U, X \times A) \\ & \simeq \mathbf{H}_{th}(U,A) \\ & \simeq A(U) \end{aligned} \,, \end{displaymath} where we used the [[adjoint (∞,1)-functor|∞-adjunction]] $(\iota \dashv Et)$ of prop. \ref{EtalificationIsCoreflection} and the [[(∞,1)-Yoneda lemma]]. This means that $\mathcal{O}_{X}(A)$ behaves as the \emph{sheaf of $A$-valued functions over $X$}. Since $\mathcal{O}_{X}$ is [[right adjoint]] to the forgetful functor \begin{displaymath} Sh_{\mathbf{H}}(X) \simeq (\mathbf{H}_{th})_{/X}^{fet} \hookrightarrow (\mathbf{H}_{th})_{/X} \stackrel{\underset{X}{\sum}}{\to} \mathbf{H}_{th} \end{displaymath} it preserves [[(∞,1)-limits]]. Therefore this is a [[structure sheaf]] which exhibits $Sh_{\mathbf{H}_{th}}(X)$ as a [[structured (∞,1)-topos]] over $\mathbf{H}_{th}$ regarded as a (large) [[geometry (for structured (∞,1)-toposes)]], with the formally \'e{}tale morphisms being the ``admissible morphisms''. \end{remark} \begin{example} \label{CotangentBundle}\hypertarget{CotangentBundle}{} Let $G \in Grp(\mathbf{H}_{th})$ be an [[∞-group]] and write $\flat_{dR} \mathbf{B}G \in \mathbf{H}_{th}$ for the corresponding de Rham coefficient object. Then \begin{displaymath} \mathcal{O}_X(\flat_{dR}\mathbf{B}G) \in Sh_{\mathbf{H}}(X) \end{displaymath} we may call the \textbf{$G$-valued flat cotangent sheaf} of $X$. \end{example} \begin{remark} \label{}\hypertarget{}{} For $U \in \mathbf{H}_{th}$ a test object (say an object in a [[(∞,1)-site]] of definition, under the [[Yoneda embedding]]) a formally \'e{}tale morphism $U \to X$ is like an [[open map]]/open embedding. Regarded as an object in $(\mathbf{H}_{th})_{/X}^{fet}$ we may consider the sections over $U$ of the cotangent bundle as defined above, which in $\mathbf{H}_{th}$ are diagrams \begin{displaymath} \itexarray{ U &&\to&& \mathcal{O}_X(\flat_{dR}\mathbf{B}G) \\ & \searrow && \swarrow \\ && X } \,. \end{displaymath} By the fact that $Et(-)$ is [[right adjoint]], such diagrams are in bijection to diagrams \begin{displaymath} \itexarray{ U &&\to&& X \times \flat_{dR} \mathbf{B}G \\ & \searrow && \swarrow \\ && X } \end{displaymath} where we are now simply including on the left the formally \'e{}tale map $(U \to X)$ along $(\mathbf{H}_{th})^{fet}_{/X} \hookrightarrow (\mathbf{H}_{th})_{/X}$. In other words, the sections of the $G$-valued flat cotangent sheaf $\mathcal{O}_X(\flat_{dR}\mathbf{B}G)$ are just the sections of $X \times \flat_{dR}\mathbf{B}G \to X$ itself, only that the \emph{domain} of the section is constrained to be a formally \'e{} patch of $X$. But then by the very nature of $\flat_{dR}\mathbf{B}G$ it follows that the flat sections of the $G$-valued cotangent bundle of $X$ are indeed nothing but the flat $G$-valued differential forms on $X$. \end{remark} \begin{prop} \label{StructuredPetitToposesAreLocallyContractible}\hypertarget{StructuredPetitToposesAreLocallyContractible}{} For $X \in \mathbf{H}_{th}$ an object in a differentially cohesive $\infty$-topos, then its petit structured $\infty$-topos $Sh_{\mathbf{H}_{th}}(X)$, according to def. \ref{TheStructureSheafOfX}, is [[locally ∞-connected (∞,1)-topos|locally ∞-connected]]. \end{prop} \begin{proof} We need to check that the composite \begin{displaymath} \infty Grpd \stackrel{Disc}{\longrightarrow} \mathbf{H}_{th} \stackrel{(-) \times X}{\longrightarrow} (\mathbf{H}_{th})_{/X} \stackrel{L}{\longrightarrow} Sh_{\mathbf{H}}(X) \end{displaymath} preserves [[(∞,1)-limits]], so that it has a further [[left adjoint]]. Here $L$ is the reflector from prop. \ref{EtalificationIsCoreflection}. Inspection shows that this composite sends an object $A \in \infty Grpd$ to $\mathbf{\Pi}_{inf}(Disc(A)) \times X \to X$: \begin{displaymath} \itexarray{ \mathbf{\Pi}_{inf}(Disc(A)) \times X &\longrightarrow& \mathbf{\Pi}_{inf}(Disc(A) \times X) & \simeq \mathbf{\Pi}_{inf}(Disc(A)) \times \mathbf{\Pi}_{inf}(X) \\ \downarrow &{}^{(pb)}& \downarrow \\ X &\longrightarrow& \mathbf{\Pi}_{inf}(X) } \,. \end{displaymath} By the discussion at \href{slice+infinity-category#LimitsAndColimits}{slice (∞,1)-category -- Limits and colimits} an [[(∞,1)-limit]] in the slice $(\mathbf{H}_{th})_{/X}$ is computed as an [[(∞,1)-limit]] in $\mathbf{H}$ of the [[diagram]] with the slice [[cocone]] adjoined. By [[right adjoint|right adjointness]] of the inclusion $Sh_{\mathbf{H}}(X) \hookrightarrow (\mathbf{H}_{th})_{/X}$ the same is then true for $Sh_{\mathbf{H}}(X) \coloneqq (\mathbf{H}_{th})_{/X}^{et}$. Now for $A \colon J \to \infty Grpd$ a [[diagram]], it is taken to the diagram $j \mapsto \mathbf{\Pi}_{inf}(Disc(A_j)) \times X \to X$ in $Sh_{\mathbf{H}}(X)$ and so its $\infty$-limit is computed in $\mathbf{H}$ over the diagram locally of the form \begin{displaymath} \itexarray{ X \times \mathbf{\Pi}_{inf}(Disc(A_{j})) &&\longrightarrow&& X \times \mathbf{\Pi}_{inf}(Disc(A_{j'})) \\ & \searrow && \swarrow \\ && X } \simeq \itexarray{ X \times \mathbf{\Pi}_{inf}(Disc(A_{j})) &&\longrightarrow&& X \times \mathbf{\Pi}_{inf}(Disc(A_{j'})) \\ & \searrow && \swarrow \\ && X \times \ast } \,. \end{displaymath} Since $\infty$-limits commute with each other this limit is the product of \begin{enumerate}% \item $\underset{\leftarrow}{\lim}_j \mathbf{\Pi}_{inf}(Disc(A_j))$ \item $\underset{\leftarrow}{\lim}_{J \star \Delta^0} X$ (over the co-coned diagram constant on $X$). \end{enumerate} For the first of these, since the [[infinitesimal shape modality]] $\mathbf{\Pi}_{inf}$ is in particular a [[right adjoint]] (with [[left adjoint]] the [[reduction modality]]), and since $Disc$ is also [[right adjoint]] by [[cohesion]], we have a [[natural equivalence]] \begin{displaymath} \underset{\leftarrow}{\lim}_j \mathbf{\Pi}_{inf}(Disc(A_j)) \simeq \mathbf{\Pi}_{inf}(Disc(\underset{\leftarrow}{\lim}_j(A_j))) \,. \end{displaymath} For the second, the $\infty$-limit over an $\infty$-category $J \star \Delta^0$ of a functor constant on $X$ is \begin{displaymath} \begin{aligned} \underset{\leftarrow}{\lim}_{J \star \Delta^0} X & \simeq \underset{\leftarrow}{\lim}_{J \star \Delta^0} [\ast, X] \\ & \simeq [\underset{\rightarrow}{\lim}_{J \star \Delta^0} \ast, X] \\ & \simeq [{\vert {J \star \Delta^0}\vert}, X] \\ & \simeq [\ast, X] \simeq X \end{aligned} \,, \end{displaymath} where the last line follows since ${J \star \Delta^0}$ has a terminal object and hence contractible geometric realization. In conclusion this shows that $\infty$-limits are preserved by $L \circ (-)\times X\circ Disc$. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SheafConditionAndExamples}{}\subsubsection*{{Sheaf condition and examples of \'e{}tale sheaves}}\label{SheafConditionAndExamples} \begin{prop} \label{EtaleDescentDetectedOnOpenImmersionCovers}\hypertarget{EtaleDescentDetectedOnOpenImmersionCovers}{} For $X$ a [[scheme]], and $A \in PSh(X_{et})$ a [[presheaf]], for checking the [[sheaf]] condition it is sufficient to check [[descent]] on the following two kinds of [[covers]] in the [[étale site]] \begin{enumerate}% \item jointly surjective collections of [[open immersions of schemes]]; \item single surjective/[[étale morphism of schemes|étale]] morphisms between [[affine schemes]] \end{enumerate} (all over $X$). \end{prop} (\hyperlink{Tamme}{Tamme, II Lemma (3.1.1)}, \hyperlink{Milne}{Milne, prop. 6.6}) \begin{proof} Since [[covers]] by standard [[open immersions of schemes]] in the [[Zariski topology]] are also [[étale morphisms of schemes]] and \'e{}tale covers, we may take any \'e{}tale cover $\{Y_i \to Y\}$ over $X$, find an Zariski cover $\{U_i \to X\}$ of $X$, pull back the original cover to that and in turn cover the pullbacks themselves by Zariski covers. The result is still a cover and is so by a collection of [[open immersions of schemes]]. Now using compactness assumptions we find finite subcovers of all these covers. This makes their [[disjoint union]] be a single morphisms of affines. \end{proof} \begin{prop} \label{XSchemesRepresentSheaves}\hypertarget{XSchemesRepresentSheaves}{} For $Z \to X$ any [[scheme]] over a [[scheme]] $X$, the induced [[presheaf]] on the [[étale site]] \begin{displaymath} (U_Y \to X) \mapsto Hom_X(U_Y, Z) \end{displaymath} is a [[sheaf]]. \end{prop} This is due to ([[Grothendieck]], [[SGA]]1 exp. XIII 5.3) A review is in (\hyperlink{Tamme}{Tamme, II theorem (3.1.2)}, \hyperlink{Milne}{Milne, 6.2}). \begin{proof} By prop. \ref{EtaleDescentDetectedOnOpenImmersionCovers} we are reduced to showing that the represented presheaf satisfies [[descent]] along collections of open immersions and along surjective maps of affines. For the first this is clear (it is [[Zariski topology]]-descent). For the second case of a [[faithfully flat]] cover of affines $Spec(B) \to Spec(A)$ it follows with the exactness of the correspomnding [[Amitsur complex]]. See there for details. \end{proof} \begin{remark} \label{}\hypertarget{}{} This map from $X$-schemes to sheaves on $X_{et}$ is not injective, different $X$-schemes may represent the same sheaf on $X_{et}$. Unique representatives are given by [[étale morphism of schemes|étale schemess]] over $X$. \end{remark} (e.g. \hyperlink{Tamme}{Tamme, II theorem 3.1}) We consider some examples of [[sheaves of abelian groups]] induced by prop. \ref{XSchemesRepresentSheaves} from [[group schemes]] over $X$. \begin{example} \label{}\hypertarget{}{} The [[additive group]] over $X$ is the [[group scheme]] \begin{displaymath} \mathbb{G}_a \coloneqq Spec(\mathbb{Z}[t]) \times_{Spec(\mathbb{Z})} X \,. \end{displaymath} By the [[universal property]] of the [[pullback]], the corresponding sheaf $(\mathbb{G}_a)_X$ is given by the assignment \begin{displaymath} \begin{aligned} (\mathbb{G}_a)_X(U_X \to X) & = Hom_X(U_X, Spec(\mathbb{Z}[t]) \times_{Spec(\mathbb{Z})} X) \\ & = Hom(U_X, Spec(\mathbb{Z}[t])) \\ & = Hom(\mathbb{Z}[t], \Gamma(U_X, \mathcal{O}_{U_X})) \\ & = \Gamma(U_X, \mathcal{O}_{U_X}) \end{aligned} \,. \end{displaymath} In other words, the sheaf represented by the [[additive group]] is the [[abelian sheaf]] underlying the [[structure sheaf]] of $X$. \end{example} Similarly one finds \begin{example} \label{}\hypertarget{}{} The [[multiplicative group]] over $X$ \begin{displaymath} \mathbb{G}_m \coloneqq Spec(\mathbb{Z}[t,t^{-1}]) \times_{Spec(\mathbb{Z})} X \end{displaymath} represents the sheaf $(\mathbb{G}_m)_X$ given by \begin{displaymath} (\mathbb{G}_m)_X(U_X) \mapsto \Gamma(U_X, \mathcal{O}_{U_X})^\times \,. \end{displaymath} \end{example} (e.g. \hyperlink{Tamme}{Tamme, II, 3}) \hypertarget{BaseChange}{}\subsubsection*{{Base change and sheaf cohomology}}\label{BaseChange} \begin{defn} \label{BaseChangeOnSites}\hypertarget{BaseChangeOnSites}{} For $f \colon X \longrightarrow Y$ a [[homomorphism]] of [[schemes]], there is induced a [[functor]] on the [[categories]] underlying the [[étale site]] \begin{displaymath} f^{-1} \;\colon\; Y_{et} \longrightarrow X_{et} \end{displaymath} given by sending an [[object]] $U_Y \to Y$ to the [[fiber product]]/[[pullback]] along $f$ \begin{displaymath} f^{-1} \colon (U_Y \to Y) \mapsto (X \times_Y U_Y \to X) \,. \end{displaymath} \end{defn} \begin{prop} \label{DirectAndInverseImageAlongMapOfBases}\hypertarget{DirectAndInverseImageAlongMapOfBases}{} The morphism in def. \ref{BaseChangeOnSites} is a [[morphism of sites]] and hence induces a [[geometric morphism]] between the \'e{}tale toposes \begin{displaymath} (f^\ast \dashv f_\ast) \;\colon\; Sh(X_{et}) \stackrel{\overset{f^\ast}{\leftarrow}}{\underset{f_\ast}{\longrightarrow}} Sh(Y_{et}) \,. \end{displaymath} Here the [[direct image]] is given on a [[sheaf]] $\mathcal{F} \in Sh(X_{et})$ by \begin{displaymath} f_\ast \mathcal{F} \;\colon\; (U_Y \to Y) \mapsto \mathcal{F}(f^{-1}(U_Y)) = \mathcal{F}(X \times_X U_Y) \end{displaymath} while the [[inverse image]] is given on a [[sheaf]] $\mathcal{F} \in Sh_(Y_{et})$ by \begin{displaymath} f^\ast \mathcal{F} \;\colon\; (U_X \to X) \mapsto \underset{\underset{U_X \to f^{-1}(U_Y)}{\longrightarrow}}{\lim} \mathcal{F}(U_Y) \,. \end{displaymath} \end{prop} By the discussion at \emph{\href{morphism+of+sites#RelationToGeometricMorphisms}{morphisms of sites -- Relation to geometric morphisms}}. See also for instance (\hyperlink{Tamme}{Tamme I 1.4}). \begin{defn} \label{}\hypertarget{}{} For $X_{et}$ an [[étale site]], write $\mathcal{D}(X_{et})$ for the [[derived category]] of the [[abelian category]] $Ab(Sh(X_{et}))$ of [[abelian sheaves]] on $X$. \end{defn} \begin{prop} \label{}\hypertarget{}{} The $q$th [[derived functor]] $R^q f_\ast$ of the [[direct image]] functor of def. \ref{DirectAndInverseImageAlongMapOfBases} sends $\mathcal{F} \in Ab(Sh(X_{et}))$ to the [[sheafification]] of the [[presheaf]] \begin{displaymath} (U_Y \to Y) \mapsto H^q(X \times_Y U_Y, \mathcal{F}) \,, \end{displaymath} where on the right we have the degree $q$ [[abelian sheaf cohomology]] [[cohomology group|group]] with [[coefficients]] in the given $\mathcal{F}$ ([[étale cohomology]]). \end{prop} By the discussion at \emph{[[direct image]]} and at \emph{[[abelian sheaf cohomology]]}. See e.g. (\hyperlink{Tamme}{Tamme, II (1.3.4)}, \hyperlink{Milne}{Milne prop. 12.1}). \begin{remark} \label{}\hypertarget{}{} For $O_X \stackrel{f^{-1}}{\leftarrow} O_Y \stackrel{g^{-1}}{\leftarrow} O_Z$ two composable [[morphisms of sites]], the [[Leray spectral sequence]] for the corresponding [[direct images]] exists and is of the form \begin{displaymath} E^{p,q}_2 = R^p f_\ast(R^q g_\ast(\mathcal{F})) \Rightarrow E^{p+q} = R^{p+q}(g f)_\ast(\mathcal{F}) \,. \end{displaymath} For the special case that $S_Z = \ast$ and $g^{-1}$ includes an [[étale morphism of schemes|étale morphism]] $U_Y \to Y$ this yields \begin{displaymath} E^{p,q}_2 = H^p(U_Y, R^q f_\ast \mathcal{F}) \Rightarrow E^{p+q} = H^{p+q}(U_Y \times_Y X , \mathcal{F}) \,. \end{displaymath} \end{remark} \hypertarget{QuasiCoherentModules}{}\subsubsection*{{Quasi-coherent modules}}\label{QuasiCoherentModules} \begin{prop} \label{}\hypertarget{}{} For $X$ a [[scheme]] and $N$ a [[quasicoherent module]] over its [[structure sheaf]] $\mathcal{O}_X$, then this induces an [[abelian sheaf]] on the [[étale site]] by \begin{displaymath} N_{et} \;\colon\; (U_X \to X) \mapsto \Gamma(U_Y, N \otimes_{\mathcal{O}_X} \mathcal{O}_{U_X}) \,. \end{displaymath} \end{prop} (e.g. \hyperlink{Tamme}{Tamme, II 3.2.1}) \hypertarget{relation_to_zariski_topos}{}\subsubsection*{{Relation to Zariski topos}}\label{relation_to_zariski_topos} \begin{remark} \label{}\hypertarget{}{} A [[cover]] in the [[Zariski topology]] on [[schemes]] is an [[open immersion of schemes]] and hence is in particular an [[étale morphism of schemes]]. Hence the [[étale site]] is finer than the [[Zariski site]] and so every \'e{}tale [[sheaf]] is a Zariski sheaf, but not necessarily conversely. Expressed in a different way, the \'e{}tale topos is a [[subtopos]] of the Zariski topos. \end{remark} For more see at \emph{\href{etale+cohomology#RelationZariskiEtaleCohomology}{\'e{}tale cohomology -- Properties -- Relation to Zariski cohomology}}. \hypertarget{as_a_classifying_topos}{}\subsubsection*{{As a classifying topos}}\label{as_a_classifying_topos} The \'e{}tale topos over the big \'e{}tale site of [[commutative rings]] is the [[classifying topos]] for [[strict local rings]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[basics of étale cohomology]] \item [[étale homotopy]] \item [[étale cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{etale_topos_of_a_schemes}{}\subsubsection*{{Etale topos of a schemes}}\label{etale_topos_of_a_schemes} \begin{itemize}% \item [[Günter Tamme]], section II 1 of \emph{[[Introduction to Étale Cohomology]]} \end{itemize} \begin{itemize}% \item [[James Milne]], section 7 of \emph{[[Lectures on Étale Cohomology]]} \end{itemize} \hypertarget{etale_topos_of_a_differentially_cohesive_object}{}\subsubsection*{{Etale topos of a differentially cohesive object}}\label{etale_topos_of_a_differentially_cohesive_object} \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} (\href{http://arxiv.org/abs/1310.7930}{arXiv:1310.7930}) \end{itemize} [[!redirects etale toposes]] [[!redirects etale topoi]] [[!redirects étale topos]] [[!redirects étale toposes]] [[!redirects étale topoi]] [[!redirects étale (∞,1)-topos]] [[!redirects etale (∞,1)-topos]] [[!redirects étale (∞,1)-toposes]] [[!redirects etale (∞,1)-toposes]] [[!redirects étale (infinity,1)-topos]] [[!redirects etale (infinity,1)-topos]] [[!redirects étale (infinity,1)-toposes]] [[!redirects etale (infinity,1)-toposes]] \end{document}