\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{étendue} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{slice_toposes_of_tendues_are_tendues}{Slice toposes of étendues are étendues}\dotfill \pageref*{slice_toposes_of_tendues_are_tendues} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \textbf{\'e{}tendue} (also `etendue', or `etendu'; from French `\'e{}tendue' (fem.)- \emph{extent}) is a [[topos]] $\mathcal{Y}$ that locally looks like the category of sheaves on a space: \begin{quote}% Briefly, the slogan is that $\mathcal{Y}$ is locally a topological space. (\hyperlink{Lawvere76}{Lawvere 1976}, p.129) \end{quote} Originally defined by [[A. Grothendieck]] in one of the famous `excercises' of \hyperlink{SGA4}{SGA4} (ex. 9.8.2) as a [[Grothendieck topos]] $\mathcal{Y}$ that has a well-supported object $X$ such that the [[slice topos]] $\mathcal{Y}/X$ is equivalent to a sheaf topos on a topological space, the definition was generalized by [[Lawvere]] (1975,1976) by dropping the spatiality of the slice and require only that $\mathcal{Y}/X$ is a [[localic topos]]. Several characterizations of \'e{}tendues are known and the \emph{Ur}-example of an \'e{}tendue, the presheaf topos $\mathcal{S}^G$ of group actions, exhibits one in terms of sites rather directly: it has a [[site]] where every morphism is monic. Other characterizations involve (local) [[equivalence relations]] and yield connections to [[orbifolds]], [[foliations]], and [[stacks]], which are instrumental for the generalization to \emph{$\infinity$-\'e{}tendues} (cf. \hyperlink{Carchedi13}{Carchedi 2013}). \'E{}tendues play an important role in Lawvere's approach to [[cohesion]] and the distinction between [[petit and gros toposes]] where they provide one of the classes of \textbf{petit} toposes (generalized spaces). In this context, Lawvere (1989,1991) interprets the cancellative property of the site as enabling an interpretation of \'e{}tendues as \emph{categories of processes}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A topos $\mathcal{Y}$ is called an \emph{\'e{}tendue} if there is an object $X\in|\mathcal{Y}|$ such that the unique $X\rightarrow 1$ is epic and the [[slice topos]] $\mathcal{Y}/X$ is a [[localic topos]].\footnote{An epic $k:X\rightarrow Y$ induces a [[geometric morphism]] $k_\ast:\mathcal{Y}/X\rightarrow \mathcal{Y}/Y$ whose inverse image part, the change of base functor, $k^\ast:\mathcal {Y}/Y\rightarrow\mathcal{Y}/X$ is faithful, which says by definition that $k_\ast$ is a surjection, and in case $Y=1$, one says that $\mathcal{Y}/X$ \emph{covers} $\mathcal{Y}$. $k_\ast$ is an [[étale geometric morphism]].} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{quote}% The first example of an \'e{}tendue seems to have been the [[space of moduli]] of algebraic curves, which is prevented from being globally a space due to the action of the [[Galois groups]] within each point. Yes, something vaguely reminiscent of particle spin is going on in such spaces, and the most naked form is that for any group G, the category $\mathcal{S}^G$ is an \'e{}tendue with only one point! This is easily seen from the observations that $\mathcal{S}^G/G\cong\mathcal{S}^G$ and that $G\twoheadrightarrow 1$ where the last two $G$`s denote the regular representation. (\hyperlink{Lawvere76}{Lawvere 1976}, pp.129-130) \end{quote} \begin{itemize}% \item The [[Sierpinski topos]] $\mathcal{S}^{\cdot\rightarrow\cdot}$, as the sheaf topos on the [[Sierpinski space]], is an \'e{}tendue. \item The topos $\mathcal{S}^{\cdot\rightrightarrows\cdot}$ of \emph{directed [[graphs]]} (aka [[quivers]]; Lawvere calls them \emph{irreflexive graphs}) is an \'e{}tendue, as it is locally equivalent to the sheaf topos on a three point space (Lawvere 1986). The contrast between $\mathcal{S}^{\cdot\rightrightarrows\cdot}$ and the topos $\mathcal{S}^{\Delta_1^{op}}$ of \emph{reflexive graphs} is a paradigmatic example of the distinction between a \emph{petit} and a \emph{gros} topos. \item The [[Jónsson-Tarski topos]] $\mathcal{J}_2$ is an \'e{}tendue, as it is locally equivalent to the sheaf topos on the [[Cantor space]]. It is discussed as a petit topos for \emph{labeled graphs} in (Lawvere 1989). \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item \textbf{Proposition}. A Grothendieck topos $\mathcal{Y}$ is an \'e{}tendue iff there exists a [[site]] $(\mathcal{C}, J)$ for $\mathcal{Y}$ such that every morphism of $\mathcal{C}$ is monic. \item In particular for small $\mathcal{C}$, the presheaf topos $\mathcal{S}^{\mathcal{C}^{op}}$ is an \'e{}tendue iff all morphisms in $\mathcal{C}$ are monic. In particular for [[monoid]]s $\mathcal{C}$ this is sometimes called [[left cancellative category|left cancellative]] (e.g. each free monoid is left cancellative). \item [[Subtoposes]] of \'e{}tendues are \'e{}tendues. K. Rosenthal uses this together with the preceding remark on $\mathcal{S}^{\mathcal{C}^{op}}$ for all-monic $\mathcal{C}$ in order to construct further \'e{}tendues $Sh_j(\mathcal{S}^{\mathcal{C}^{op}})$ via a topology $j$ from a suitable functor $H:\mathcal{C}\to\mathcal{S}$ (for further details see [[Jónsson-Tarski topos]] or Rosenthal(1981)). \item A Grothendieck topos is a \emph{[[boolean topos|Boolean]] \'e{}tendue} precisely if it satisfies the \emph{internal [[axiom of choice]]} (Freyd\&Scedrov 1990). An example of such a Boolean \'e{}tendue is $\mathcal{S}^G$, for $G$ a group. \item \'E{}tendues are `locally co-decidable' in the sense that for a small $\mathcal{C}$ the functor category $[\mathcal{C},Set]$ is a [[locally decidable topos]] precisely if $[\mathcal{C}^{op},Set]$ is an [[étendue]]. Also the all-monic-site property is dual to the all-epic-site property of locally decidable toposes. Both concepts are subsumed under the notion of having a (sub canonical) site representation with no (non-trivial) [[idempotents]] (McLarty 2006, Lawvere 2007). \end{itemize} \hypertarget{slice_toposes_of_tendues_are_tendues}{}\subsection*{{Slice toposes of étendues are étendues}}\label{slice_toposes_of_tendues_are_tendues} One can use the site characterization to show that being an étendue topos is a \emph{local property}. \begin{prop} \label{etendue_slices}\hypertarget{etendue_slices}{} Let $Sh(\mathcal{C},J)$ be an étendue topos with $(\mathcal{C}, J)$ being an all-monic-site presentation and $P:C^{op}\to Set$ be a presheaf on $\mathcal{C}$ that is a $J$-sheaf. Then $Sh(\mathcal{C},J)/P$ is an étendue topos. \end{prop} \begin{proof} It suffices to show that $Sh(\mathcal{C},J)/P$ has an all-monic site presentation. By exercise III.8 in \hyperlink{MacLaneMoerdijk}{Mac Lane-Moerdijk (1994, p.157)} there exists a topology $J'$ on the [[category of elements]] $\int_\mathcal{C} P$ such that \begin{displaymath} Sh(\mathcal{C},J)/P\simeq Sh(\int_\mathcal{C} P,J')\; . \end{displaymath} Whence it suffices to show that $\int_\mathcal{C} P$ is all-monic: Let $f:(C,x)\to (D,y)$ be a morphism in $\int_\mathcal{C} P$ and $g,h:(B,z)\rightrightarrows (C,x)$ such that $f\cdot g=f\cdot h$ then $g=h$ since composition in $\int_\mathcal{C} P$ is inherited from $\mathcal{C}$ and the latter was all-monic by assumption. \end{proof} \begin{prop} \label{IAC_local}\hypertarget{IAC_local}{} Let $\mathcal{E}$ be a Grothendieck topos satisfying the [[axiom of choice|internal axiom of choice]] (IAC). Then any [[slice topos]] $\mathcal{E}/X$ satisfies the internal axiom of choice as well. \end{prop} \begin{proof} By Freyd-Scedrov (\hyperlink{FreydScedrov90}{1990}, p.181) a Grothendieck topos $\mathcal{E}$ satisfies IAC iff $\mathcal{E}$ is a Boolean étendue. But being [[Boolean category|Boolean]] is a local property whence by the preceding proposition all slices $\mathcal{E}/X$ are Boolean étendues. \end{proof} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[localic topos]] \item [[petit topos]] \item [[locally decidable topos]] \item [[Deligne-Mumford stack]] \item [[bicategory of fractions]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[M. Artin]], [[A. Grothendieck]], [[J. L. Verdier]], \emph{Th\'e{}orie des Topos et Cohomologie Etale des Sch\'e{}mas ([[SGA4]])}, Springer LNM vol.269 (1972), pp.479-484. \item [[David Carchedi]], \emph{Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity Topoi} , arXiv1312.2204 (2013). (\href{http://arxiv.org/pdf/1312.2204v1.pdf}{pdf}) \item [[Peter Freyd|P. J. Freyd]], A. Scedrov, \emph{[[Categories, Allegories]]} , North-Holland Amsterdam 1990. \item [[Peter Johnstone]], \emph{Sketches of an [[Elephant]] II}, Oxford UP 2002, pp.769-775. \item [[A. Kock]], [[I. Moerdijk]], \emph{Presentations of Etendues} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{XXXII} 2 (1991) pp.145-164. (\href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1991__32_2/CTGDC_1991__32_2_145_0/CTGDC_1991__32_2_145_0.pdf}{pdf}) \item [[A. Kock]], [[I. Moerdijk]], \emph{Every \'e{}tendue comes from a local equivalence relation} , JPAA \textbf{82} (1992) pp.155-174. \item [[M. V. Lawson]], [[B. Steinberg]], \emph{Ordered groupoids and \'e{}tendues} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{XXXXV} 2 (2004) pp.82-108. (\href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_2004__45_2/CTGDC_2004__45_2_82_0/CTGDC_2004__45_2_82_0.pdf}{pdf}) \item [[F. William Lawvere]], \emph{Variable sets etendu and variable structure in topoi} , Lecture notes University of Chicago 1975. \item [[F. William Lawvere]], \emph{Variable quantities and variable structures in topoi} , pp.101-131 in Heller, Tierney (eds.), Algebra, Topology and Category Theory, Academic Press New York 1976. \item [[F. William Lawvere]], \emph{Categories of Spaces may not be Generalized Spaces as Exemplified by Directed Graphs}, Revista Colombiana de Matem\'a{}ticas \textbf{XX} (1986) pp.179-186. Reprinted with commentary in TAC \textbf{9} (2005) pp.1-7. (\href{http://www.tac.mta.ca/tac/reprints/articles/9/tr9.pdf}{pdf}) \item [[F. William Lawvere]], \emph{Qualitative Distinctions between some Toposes of Generalized Graphs} , Cont. Math. \textbf{92} (1989) pp.261-299. \item [[F. William Lawvere]], \emph{Some Thoughts on the Future of Category Theory} , pp.1-13 in Springer LNM vol. 1488 (1991). \item [[F. William Lawvere]], \emph{Axiomatic Cohesion} , TAC \textbf{19} no. 3 (2007) pp.41-49. (\href{http://www.tac.mta.ca/tac/volumes/19/3/19-03.pdf}{pdf}) \item [[F. William Lawvere]], \emph{Cohesive Toposes: Combinatorial and Infinitesimal Cases}, Como Ms. 2008. (\href{http://comocategoryarchive.com/Archive/temporary_new_material/FWLawvere-Cohesive-Toposes-Como-January-2008.pdf}{pdf}) \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} , Springer Heidelberg 1994. \item [[Colin McLarty]], \emph{Every Grothendieck Topos has a One-Way Site} , TAC \textbf{16} no. 5 (2006) pp.123-126. (\href{http://www.tac.mta.ca/tac/volumes/16/5/16-05.pdf}{pdf}) \item [[Dorette A. Pronk]], \emph{Etendues and stacks as bicategory of fractions} , Comp. Math. \textbf{102} 3 (1996) pp.243-303. (\href{http://archive.numdam.org/ARCHIVE/CM/CM_1996__102_3/CM_1996__102_3_243_0/CM_1996__102_3_243_0.pdf}{pdf}) \item [[Pedro Resende]], \emph{Groupoid Sheaves as Quantale Modules} , arXiv.0807.4848v3 (2011). (\href{http://arxiv.org/pdf/0807.4848v3.pdf}{pdf}) \item [[Kimmo I. Rosenthal]], \emph{\'E{}tendues and Categories with Monic Maps} , JPAA \textbf{22} (1981) pp.193-212. \item [[Kimmo I. Rosenthal]], \emph{Sheaves and Local Equivalence Relations} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{XXV} 2 (1984) pp.179-206. (\href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1984__25_2/CTGDC_1984__25_2_179_0/CTGDC_1984__25_2_179_0.pdf}{pdf}) \item [[Kimmo I. Rosenthal]], \emph{Covering \'E{}tendues and Freyd's Theorem} , Proc. AMS \textbf{99} 2 (1987) pp.221-222. (\href{http://www.ams.org/journals/proc/1987-099-02/S0002-9939-1987-0870775-X/S0002-9939-1987-0870775-X.pdf}{pdf}) \end{itemize} \end{document}