\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Čech groupoid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Codescent}{Codescent}\dotfill \pageref*{Codescent} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $\{U_i \to X\}$ a [[cover]] of a [[space]] $X$, the corresponding \textbf{ech groupoid} is the [[internal groupoid]] \begin{displaymath} C(\{U_i\}) = (\coprod_{i j} U_i \cap U_j \rightrightarrows \coprod_i U_i) \end{displaymath} whose set of objects is the [[disjoint union]] $\coprod_i U_i$ of the covering patches, and the set of morphisms is the disjoint union of the [[intersections]] $U_i \cap U_j$ of these patches. This is the $2$-[[coskeleton]] of the full [[Čech nerve]]. See there for more details. If we speak about [[generalized element|generalized points]] of the $U_i$ (which are often just ordinary points, in applications), then \begin{itemize}% \item an [[object]] of $C(\{U_i\})$ is a pair $(x,i)$ where $x$ is a point in $U_i$; \item there is a unique [[morphism]] $(x,i) \to (x,j)$ for all pairs of objects labeled by the same $x$ such that $x \in U_i \cap U_j$; \item hence the composition of morphism is of the form \begin{displaymath} \itexarray{ && (x,j) \\ & \nearrow &=& \searrow \\ (x,i) &&\to&& (x,k) } \,. \end{displaymath} \end{itemize} \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{CechGroupoid}\hypertarget{CechGroupoid}{} \textbf{(Cech groupoid)} Let $\mathcal{C}$ be a [[site]], and $X \in \mathcal{C}$ an [[object]] of that site. For each [[covering]] family $\{ U_i \overset{\iota_i}{\to} X\}$ of $X$ in the given [[coverage]], the \emph{[[Cech groupoid]]} is the [[presheaf of groupoids]] \begin{displaymath} C(\{U_i\}) \;\in\; [\mathcal{C}^{op}, Grpd] \;\simeq\; Grpd\left( [\mathcal{C}^{op}, Set] \right) \end{displaymath} which, regarded as an [[internal category]] in the [[category of presheaves]] over $\mathcal{C}$, has as [[presheaf]] of [[objects]] the [[coproduct]] \begin{displaymath} Obj_{C(\{U_i\})} \;\coloneqq\; \underset{i}{\coprod} y(U_i) \end{displaymath} of the [[representable presheaf|presheaves represented]] (under the [[Yoneda embedding]]) by the [[covering]] objects $U_i$, and as [[presheaf]] of [[morphisms]] the [[coproduct]] over all [[fiber products]] of these: \begin{displaymath} Mor_{C(\{U_i\})} \;\coloneqq\; \underset{i,j}{\coprod} y(U_i) \times_{y(X)} y(U_j) \,. \end{displaymath} This means that for any $V \in \mathcal{C}$ the [[groupoid]] assigned by $C(\{U_i\})$ has as set of objects [[pairs]] consisting of an index $i$ and a morphism $V \overset{\kappa_i}{\to} U_i$ in $\mathcal{C}$, and there is a unique morphism between two such objects \begin{displaymath} \kappa_i \longrightarrow \kappa_j \end{displaymath} precisely if \begin{equation} \iota_i \circ \kappa_i \;=\; \iota_j \circ \kappa_j \phantom{AAAAAAAA} \itexarray{ && V \\ & {}^{\mathllap{\kappa_i}}\swarrow && \searrow^{\mathrlap{\kappa_j}} \\ U_i && && U_j \\ & {}_{\mathllap{\iota_i}}\searrow && \swarrow_{\mathrlap{\iota_j}} \\ && X } \label{CechMatchingCondition}\end{equation} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Codescent}{}\subsubsection*{{Codescent}}\label{Codescent} We discuss (Prop. \ref{CechGroupoidCoRepresents} below) how the Cech groupoid co-represents \emph{[[matching families]]} as they appear in the definition of [[sheaves]]. For reference, we first recall that definition: \begin{defn} \label{CompatibleElements}\hypertarget{CompatibleElements}{} \textbf{([[matching family]] -- [[descent object]])} Let $\mathcal{C}$ be a [[small category]] equipped with a [[coverage]], hence a [[site]] and consider a [[presheaf]] $\mathbf{Y} \in [\mathcal{C}^{op}, Set]$ (Example \ref{CategoryOfPresheaves}) over $\mathcal{C}$. Given an [[object]] $X \in \mathcal{C}$ and a [[covering]] $\left\{ U_i \overset{\iota_i}{\to} X \right\}_{i \in I}$ of it we say that a \emph{[[matching family]]} (of probes of $\mathbf{Y}$) is a [[tuple]] $(\phi_i \in \mathbf{Y}(U_i))_{i \in I}$ such that for all $i,j \in I$ and [[pairs]] of [[morphisms]] $U_i \overset{\kappa_i}{\leftarrow} V \overset{\kappa_j}{\to} U_j$ satisfying \begin{equation} \iota_i \circ \kappa_i \;=\; \iota_j \circ \kappa_j \phantom{AAAAAAAA} \itexarray{ && V \\ & {}^{\mathllap{\kappa_i}}\swarrow && \searrow^{\mathrlap{\kappa_j}} \\ U_i && && U_j \\ & {}_{\mathllap{\iota_i}}\searrow && \swarrow_{\mathrlap{\iota_j}} \\ && X } \label{MatchingCondition}\end{equation} we have \begin{equation} \mathbf{Y}(\kappa_i)(\phi_i) \;=\; \mathbf{Y}(\kappa_j)(\phi_j) \,. \label{GluingCondition}\end{equation} We write \begin{equation} Match\big( \{U_i\}_{i \in I} \,,\, \mathbf{Y} \big) \subset \underset{i}{\prod} \mathbf{Y}(U_i) \;\in\; Set \label{SetOfMatching}\end{equation} for the set of [[matching families]] for the given presheaf and covering. This is also called the \emph{[[descent object]]} of $\mathbf{Y}$ for \emph{[[descent]]} along the [[covering]] $\{U_i \overset{\iota_i}{\to}X\}$. \end{defn} \begin{example} \label{CechGroupoidCoRepresents}\hypertarget{CechGroupoidCoRepresents}{} \textbf{([[Cech groupoid]] co-represents [[matching families]] -- [[codescent]])} For [[Grpd]] regarded as a [[cosmos]] for [[enriched category theory]], via its [[cartesian closed category]]-structire, and $\mathcal{C}$ a [[site]], let \begin{displaymath} \mathbf{Y} \in [\mathcal{C}^{op}, Set] \hookrightarrow [\mathcal{C}^{op}, Grpd] \end{displaymath} be a [[presheaf]] on $\mathcal{C}$, regarded as a [[Grpd]]-[[enriched presheaf]], let $X \in \mathcal{C}$ be any [[object]] and $\{U_i \overset{\iota_i}{\to} X\}_i$ a [[covering]] family with induced [[Cech groupoid]] $C(\{U_i\}_i)$ (Def.\ref{CechGroupoid}). Then there is an [[isomorphism]] \begin{displaymath} [\mathcal{C}^{op},Grpd] \left( C\left(\{U_i\}_i\right), \, \mathbf{Y} \right) \;\simeq\; Match\left( \{U_i\}_i, \, \mathbf{Y} \right) \end{displaymath} between the [[hom-object|hom-groupoid]] of [[Grpd]]-[[enriched presheaves]] and the set of [[matching families]] (Def. \ref{CompatibleElements}). Since therefor the Cech-groupoid co-represents the [[descent object]], it is sometimes called the \emph{[[codescent object]]} along the given covering. Moreover, under this identification the canonical morphism $C\left( \{U_i\}_i \right) \overset{p_{\{U_i\}_i}}{\longrightarrow} X$ induces the comparison morphism \begin{displaymath} \itexarray{ [\mathcal{C}^{op}, Grpd]\left( X, \, \mathbf{Y} \right) & \simeq & \mathbf{Y}(X) \\ {}^{ \mathllap{ [\mathcal{C}^{op}, Grpd](p_{\{U_i\}_i}, \mathbf{Y}) } }\downarrow && \downarrow \\ [\mathcal{C}^{op},Grpd] \left( C\left(\{U_i\}_i\right), \, \mathbf{Y} \right) &\simeq& Match\left( \{U_i\}_i, \, \mathbf{Y} \right) } \,. \end{displaymath} In conclusion, this means that the [[presheaf]] $\mathbf{Y}$ is a [[sheaf]] (Def. \ref{Sheaf}) precisely if homming Cech groupoid projections into it produces an isomorphism. \end{example} \begin{proof} The hom-groupoid is computed as the [[end]] \begin{displaymath} [\mathcal{C}^{op},Grpd] \left( C\left(\{U_i\}_i\right), \, \mathbf{Y} \right) \;=\; \int_{V \in \mathcal{C}} \left[ C\left(\{U_i\}_i\right)(V), \, \mathbf{Y}(V) \right] \,, \end{displaymath} where the ``integrand'' is the [[functor category]] (here: a [[groupoid]]) from the [[Cech groupoid]] at a given $V$ to the set (regarded as a groupoid) assigned by $\mathbf{Y}$ to $V$. Since $\mathbf{Y}(V)$ is just a set, that functor groupoid, too, is just a set, regarded as a groupoid. Its elements are the [[functors]] $C\left(\{U_i\}_i\right)(V) \longrightarrow \mathbf{Y}(V)$, which are equivalently those [[functions]] on sets of objects \begin{displaymath} \underset{i}{\coprod} y(U_i)(V) = Obj_{C\left(\{U_i\}_i\right)(V)} \longrightarrow Obj_{\mathbf{Y}(V)} = \mathbf{Y}(V) \end{displaymath} which respect the [[equivalence relation]] induced by the morphisms in the Cech groupoid at $V$. Hence the hom-groupoid is a subset of the [[end]] of these [[function sets]]: \begin{displaymath} \begin{aligned} \int_{V \in \mathcal{C}} \left[ C\left(\{U_i\}_i\right)(V), \, \mathbf{Y}(V) \right] & \hookrightarrow \int_{V \in \mathcal{C}} \left[ \underset{i}{\coprod} y(U_i)(V), \, \mathbf{Y}(V) \right] \\ & \simeq \int_{V \in \mathcal{C}} \underset{i}{\prod} \left[ y(U_i)(V), \, \mathbf{Y}(V) \right] \\ & \simeq \underset{i}{\prod} \int_{V \in \mathcal{C}} \left[ y(U_i)(V), \, \mathbf{Y}(V) \right] \\ & \simeq \underset{i}{\prod} \mathbf{Y}(U_i) \end{aligned} \end{displaymath} Here we used: first that the [[internal hom]]-functor turns colimits in its first argument into limits (see at \emph{[[internal hom-functor preserves limits]]}), then that [[limits commute with limits]], hence that in particular [[ends]] commute with [[products]] , and finally the [[enriched Yoneda lemma]], which here comes down to just the plain [[Yoneda lemma]] . The end result is hence the same [[Cartesian product]] set that also the set of matching families is defined to be a subset of, in \eqref{SetOfMatching}. This shows that an element in $\int_{V \in \mathcal{C}} \left[ C\left(\{U_i\}_i\right)(V), \, \mathbf{Y}(V) \right]$ is a [[tuple]] $(\phi_i \in \mathbf{Y}(U_i))_i$, subject to some condition. This condition is that for each $V \in \mathcal{C}$ the assignment \begin{displaymath} \itexarray{ C\left(\{U_i\}_i\right)(V) & \longrightarrow & \mathbf{Y}(V) \\ (V \overset{\kappa_i}{\to} U_i) &\mapsto& \kappa_i^\ast \phi_i = \mathbf{Y}(\kappa_i)(\phi_i) } \end{displaymath} constitutes a [[functor]] of [[groupoids]]. By definition of the [[Cech groupoid]], and since the [[codomain]] is a just [[set]] regarded as a [[groupoid]], this is the case precisely if \begin{displaymath} \mathbf{Y}(\kappa_i)(\phi_i) \;=\; \mathbf{Y}(\kappa_j)(\phi_j) \phantom{AAAA} \text{for all}\, i,j \,, \end{displaymath} which is exactly the condition \eqref{GluingCondition} that makes $(\phi_i)_i$ a matching family. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} For $X$ a [[smooth manifold]] and $\{U_i \to X\}$ an [[atlas]] by [[coordinate chart]]s, the ech groupoid is a [[Lie groupoid]] which is equivalent to $X$ as a Lie groupoid: $C(\{U_i\}) \stackrel{\simeq}{\to} X$ For $\mathbf{B}G$ the Lie groupoid with one object coming from a [[Lie group]] $G$ morphisms of Lie groupoids of the form \begin{displaymath} \itexarray{ C(\{U_i\}) &\stackrel{g}{\to}& \mathbf{B}G \\ \downarrow^{\mathrlap{\simeq}} \\ X } \end{displaymath} are also called [[anafunctor]]s from $X$ to $\mathbf{B}G$. They correspond to smooth $G$-[[principal bundle]]s on $X$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Cech nerve]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For instance \begin{itemize}% \item [[J. F. Jardine]], Example 5 in: \emph{Homotopy classification of gerbes} (\href{https://arxiv.org/abs/math/0605200}{arXiv:math/0605200}) \end{itemize} [[!redirects Cech groupoid]] [[!redirects Cech groupoids]] [[!redirects Čech groupoids]] \end{document}