\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Čech model structure on simplicial presheaves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{ech model structure on simplicial presheaves} on a [[site]] $C$ is a model for the [[topological localization]] of an [[(∞,1)-category of (∞,1)-presheaves]] on $C$ to the [[(∞,1)-category of (∞,1)-sheaves]]. It is obtained from the the [[global model structure on simplicial presheaves]] on $C$ by [[Bousfield localization of model categories|left Bousfield localization]]s at [[Cech cover]]s: its fibrant objects are [[∞-stack]]s that satisfy [[descent]] over [[Cech cover]]s but not necessarily over [[hypercover]]s. Further [[Bousfield localization of model categories|left Bousfield localization]] at [[hypercover]]s leads from the ech model structure to the Joyal-Jardine [[local model structure on simplicial presheaves]] that presents the [[hypercomplete (∞,1)-topos]] which is the [[hypercompletion]] of that presented by the ech model structure. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a small [[site]] and write $[C^{op}, sSet]_{proj}$ and $[C^{op}, sSet]_{inj}$ for the projective and injective [[global model structure on simplicial presheaves]], respectively. For $\{U_i \to V\}_i$ a covering family in the [[site]] $C$, let \begin{displaymath} C(\{U_i\}) := \left( \cdots\stackrel{\to}{\stackrel{\to}{\to}}\coprod_{i j} U_{i j}\stackrel{\to}{\to}\coprod_i U_i \right) \end{displaymath} be the corresponding [[Cech nerve]], regarded as a [[simplicial presheaf]] on $C$. This comes canonically with a morphism \begin{displaymath} C(\{U_i\}) \to V \end{displaymath} of simplicial presheaves, the corresponding \emph{ech cover morphism} . Notice that by the discussion at \href{http://ncatlab.org/nlab/show/model+structure+on+simplicial+presheaves#FibAndCofibObjects}{model structure on simplicial presheaves - fibrant and cofibrant objects} this is a morphism between cofibrant objects. \begin{udefn} The injective (projective) \textbf{ech model structure on simplicial presheaves} $[C^{op},sSet]_{Cech}$ on $C$ is the [[Bousfield localization of model categories|left Bousfield localization]] of $[C^{op}, sSet]_{inj}$ ($[C^{op}, sSet]_{proj}$) at the set of ech cover morphisms. \end{udefn} By the general poperties of [[Bousfield localization of model categories|Bousfield localization]] this means that the fibrant-cofibrant objects $A$ of $[C^{op},sSet]_{Cech}$ are precisely those that are fibrant-cofibrant in the global model structure and in addition satisfy the [[descent]] condition that for all covers $\{U_i \to V\}$ the morphism of simplicial sets \begin{displaymath} A(U) \simeq [C^op,sSet](V,U) \to [C^{op},sSet](C(\{U_i\}), A) \end{displaymath} is a weak equivalence in the standard [[model structure on simplicial sets]]. This is the model for the $\infty$-analog of the [[sheaf]] condition, modelling the [[topological localization]] of an $(\infty,1)$-presheaf $(\infty,1)$-topos. [[Mike Shulman]]: Two questions, one (hopefully) easy and one (perhaps) hard: \begin{enumerate}% \item Is there a Quillen equivalent ech model structure on simplicial \emph{sheaves}? Can we just lift the model structure for simplicial presheaves along the sheafification adjunction? \item Is there a characterization of the weak equivalences in either ech model structure? \end{enumerate} I am particularly interested in this for the following reason. According to Beke in \emph{Sheafifiable homotopy model categories}, the weak equivalences in the [[local model structure on simplicial sheaves]] are precisely those maps $f\colon X\to Y$ of simplicial objects in the corresponding 1-topos of sheaves of sets such that the statement ``$f$ is a weak equivalence of simplicial sets'' is true in the [[internal logic]] of the topos (at least, interperiting ``$f$ is a weak equivalence of simplicial sets'' by one particular set of geometric sentences whose interpretation in $Set$ is equivalent to saying that a simplicial map is a weak equivalence). But if, as [[HTT]] teaches us, ech descent is often to be preferred to hyperdescent, then we should be interested in ech weak equivalences instead. So I would really like to know what it means for a map of simplicial sheaves to be a ech weak equivalence, in the \emph{internal logic} of the 1-topos of sheaves of sets. If nothing else, I think such a characterization would help me understand the real meaning of [[hypercompletion]]. But any sort of characterization of them would be better than none. [[Urs Schreiber]]: below is a reply to the first question. [[Mike Shulman]]: Thanks for attacking this. I thought I should also mention, for anyone listening in, that this question is evidently also relevant to what the correct notion of [[internal ∞-groupoid]] may be. \begin{quote}% check \end{quote} We may form the [[transferred model structure]] on simplicial \emph{[[sheaf|sheaves]]} by transferring along the degreewise [[sheafification]] [[adjunction]] \begin{displaymath} Sh(C) \stackrel{\overset{sh}{\leftarrow}}{\underset{}{\hookrightarrow}} PSh(C) \,. \end{displaymath} This defines fibrations and weak equivalences in $sSh(C)$ to be those morphisms that are fibrations or weak equivalences, respectively, as morphism in $sPSh(C)_{Cech} = [C^{op},sSet]_{Cech}$. As discussed there, sufficient conditions for this to be a model structure is that \begin{itemize}% \item the inclusion $Sh(C) \hookrightarrow PSh(C)$ preserves [[filtered colimit]]s; \item $sSh(C)$ has functorial fibrant replacement and functorial [[path object]]s for fibrant objects. \end{itemize} Since [[sheafification]] does preserve [[filtered colimit]]s the first condition is satisfied degreewise and hence is satisfied. [[Mike Shulman]]: I believe that sheafification preserves $\kappa$-filtered colimits for some sufficiently large $\kappa$, but if the site has covers of infinite cardinality, I don't see why sheafification would preserve $\omega$-filtered colimits. But I think this is enough for the proof to work. Since the [[small object argument]] holds in $sSh(C)$ for generating acyclic cofibrations we have functorial fibrant replacement. And a path object is obtained just by forming objectwise the standard path object in [[sSet]], as in $[C^{op}, sSet]$. [[Mike Shulman]]: The small object argument doesn't automatically produce functorial fibrant replacements in this context\ldots{} isn't the whole question whether the map to the ``fibrant replacement'' is still a weak equivalence (in the underlying category)? I.e. whether $F(J)$-cell complexes are still weak equivalences. \hypertarget{references}{}\subsection*{{References}}\label{references} A detailed though unfinished account of the ech model structure is given in \begin{itemize}% \item Daniel Dugger, \emph{Sheaves and homotopy theory} (\href{http://www.uoregon.edu/~ddugger/cech.html}{web}, \href{http://ncatlab.org/nlab/files/cech.pdf}{pdf}) \end{itemize} But beware of this document is unfinished. Some aspects of this appeared in \begin{itemize}% \item [[Daniel Dugger]], \emph{[[DuggerUniv.pdf:file]]} \end{itemize} [[!redirects ?ech model structure on simplicial presheaves]] [[!redirects Cech model structure on simplicial presheaves]] [[!redirects ?ech model structure on simplicial presheaves]] \end{document}