\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{κ-ary exact category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{regular_and_exact_categories}{}\paragraph*{{Regular and Exact categories}}\label{regular_and_exact_categories} [[!include regular and exact categories - contents]] \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{ary_regular_and_exact_categories}{}\section*{{$\kappa$-ary regular and exact categories}}\label{ary_regular_and_exact_categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{sinks_and_relations}{Sinks and relations}\dotfill \pageref*{sinks_and_relations} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ary_regularity_and_exactness}{$\kappa$-ary regularity and exactness}\dotfill \pageref*{ary_regularity_and_exactness} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_2category_of_ary_exact_categories}{The 2-category of $\kappa$-ary exact categories}\dotfill \pageref*{the_2category_of_ary_exact_categories} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notions of [[regular category]], [[exact category]], [[coherent category]], [[extensive category]], [[pretopos]], and [[Grothendieck topos]] can be nicely unified in a theory of ``familial regularity and exactness.'' This was apparently first noticed by [[Ross Street]], and expanded by [[Mike Shulman]] with a generalized theory of [[exact completion]]. \hypertarget{sinks_and_relations}{}\subsection*{{Sinks and relations}}\label{sinks_and_relations} Let $C$ be a [[finitely complete category]]. By a [[sink]] in $C$ we mean a family $\{f_i\colon A_i \to B\}_{i\in I}$ of [[morphism]]s with common [[target]]. A sink $\{f_i\colon A_i \to B\}$ is \textbf{[[extremal epimorphism|extremal epic]]} if it doesn't factor through any proper [[subobject]] of $B$. The \emph{[[pullback]]} of a sink along a morphism $B' \to B$ is defined in the evident way. By a (many-object) \textbf{[[relation]]} in $C$ we will mean a family of objects $\{A_i\}_{i\in I}$ together with, for every $i,j\in I$, a monic span $A_i \leftarrow R_{i j} \to A_j$ (that is, a [[subobject]] $R_{i j}$ of $A_i \times A_j$. We say such a relation is: \begin{itemize}% \item [[reflexive relation|reflexive]] if $R_{i i}$ contains the diagonal $A_i \to A_i \times A_i$, for all $i$, \item [[transitive relation|transitive]] if the pullback $R_{i j} \times_{A_j} R_{j k}$ factors through $R_{i k}$, for all $i,j,k$, \item [[symmetric relation|symmetric]] if $R_{i j}$ contains, hence is equal to, the transpose of $R_{j i}$ for all $i,j$, and \item a [[congruence]] if it is reflexive, transitive, and symmetric; this is an internal notion of (many-object) [[equivalence relation]]. \end{itemize} Abstractly, reflexive and transitive relations can be identified with categories [[enriched category|enriched]] in a suitable [[bicategory]]; see (Street 1984). Congruences can be identified with enriched $\dagger$-[[dagger-categories|categories]]. A \textbf{quotient} for a relation is a [[colimit]] for the diagram consisting of all the $A_i$ and all the spans $A_i \leftarrow R_{i j} \to A_j$. And the \textbf{kernel} of a sink $\{f_i\colon A_i\to B\}$ is the relation on $\{A_i\}$ with $R_{i j} = A_i \times_B A_j$. It is evidently a congruence. Finally, a sink is called \textbf{[[effective epimorphism|effective-epic]]} if it is the quotient of its kernel. It is called \textbf{universally effective-epic} if any pullback of it is effective-epic. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \begin{itemize}% \item If ${|I|} = 1$, a congruence is the same as the ordinary internal notion of [[congruence]]. In this case [[quotient object|quotients]] and [[kernel pair|kernels]] reduce to the usual notions. \item If ${|I|} = 0$, a congruence contains no data and a sink is just an object in $C$. The empty congruence is, trivially, the kernel of the empty sink with any target $B$, and a quotient for the empty congruence is an [[initial object]]. \item Given a family of objects $\{A_i\}$, define a congruence by $R_{i i}=A_i$ and $R_{i j}=0$ (an initial object) if $i \neq j$. Call a congruence of this sort \emph{trivial} (empty congruences are always trivial). Then a quotient for a trivial congruence is a [[coproduct]] of the objects $A_i$, and the kernel of a sink $\{f_i\colon A_i\to B\}$ is trivial iff the $f_i$ are disjoint monomorphisms. \end{itemize} \hypertarget{ary_regularity_and_exactness}{}\subsection*{{$\kappa$-ary regularity and exactness}}\label{ary_regularity_and_exactness} Let $\kappa$ be an [[arity class]]. We call a sink or relation \textbf{$\kappa$-ary} if the cardinality ${|I|}$ is $\kappa$-small. As usual for arity classes, the cases of most interest have special names: \begin{itemize}% \item When $\kappa = \{1\}$ we say \textbf{unary}. \item When $\kappa = \omega$ is the set of finite cardinals, we say \textbf{finitary}. \item When $\kappa$ is the class of all cardinal numbers, we say \textbf{infinitary}. \end{itemize} \begin{theorem} \label{KRegular}\hypertarget{KRegular}{} For a category $C$, the following are equivalent: \begin{enumerate}% \item $C$ has finite limits, every $\kappa$-ary sink in $C$ factors as an extremal epic sink followed by a monomorphism, and the pullback of any extremal epic $\kappa$-ary sink is extremal epic. \item $C$ has finite limits, and the kernel of any $\kappa$-ary sink in $C$ is also the kernel of some universally effective-epic sink. \item $C$ is a [[regular category]] and has pullback-stable [[joins]] of $\kappa$-small families of [[subobjects]]. \end{enumerate} \end{theorem} When these conditions hold, we say $C$ is \textbf{$\kappa$-ary regular}, or alternatively \textbf{$\kappa$-ary coherent}. There are also some other more technical characterizations; see \hyperlink{Shulman}{Shulman}. \begin{theorem} \label{KExact}\hypertarget{KExact}{} For a category $C$, the following are equivalent: \begin{enumerate}% \item $C$ has finite limits, and every $\kappa$-ary congruence is the kernel of some universally effective-epic sink. \item $C$ is $\kappa$-ary regular, and every $\kappa$-ary congruence is the kernel of some sink. \item $C$ is both [[exact category|exact]] and $\kappa$-ary [[extensive category|extensive]]. \end{enumerate} \end{theorem} When these conditions hold, we say that $C$ is \textbf{$\kappa$-ary exact}, or alternatively a \textbf{$\kappa$-ary pretopos}. \hypertarget{examples_2}{}\subsection*{{Examples}}\label{examples_2} \begin{enumerate}% \item $C$ is [[regular category|regular]] iff it is unary regular. \item $C$ is [[coherent category|coherent]] iff it is finitary regular. \item $C$ is [[coherent category|infinitary-coherent]] iff it is [[well-powered category|well-powered]] and infinitary regular. \item $C$ is [[exact category|exact]] iff it is unary exact. \item $C$ is a [[pretopos]] iff it is finitary exact. \item $C$ is an [[pretopos|infinitary pretopos]] iff it is [[well-powered category|well-powered]] and infinitary exact. \end{enumerate} Some other sorts of [[exactness properties]] (especially [[lex-colimits]]) can also be characterized in terms of congruences, kernels, and quotients. For instance: \begin{enumerate}% \item $C$ is $\kappa$-ary [[extensive category|lextensive]] iff every $\kappa$-ary \emph{trivial} congruence has a pullback-stable quotient of which it is the kernel. \end{enumerate} In \hyperlink{Street}{Street}, there is also a version of regularity and exactness that applies even to some \emph{large} sinks and congruences, and implies some small-generation properties of the category as well. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} In a $\kappa$-ary regular category, \begin{itemize}% \item Every extremal-epic $\kappa$-ary sink is the quotient of its kernel. \item Any $\kappa$-ary congruence that is a kernel has a quotient. \end{itemize} Thus, in a $\kappa$-ary exact category, \begin{itemize}% \item Every $\kappa$-ary congruence has a quotient. \end{itemize} In a $\kappa$-ary regular category, the class of all $\kappa$-small and effective-epic families generates a [[topology]], called its $\kappa$-canonical topology. This topology makes it a [[∞-ary site]]. \hypertarget{the_2category_of_ary_exact_categories}{}\subsection*{{The 2-category of $\kappa$-ary exact categories}}\label{the_2category_of_ary_exact_categories} A functor $F:C\to D$ between $\kappa$-ary exact categories is called \textbf{$\kappa$-ary exact} if it preserves finite limits and $\kappa$-small effective-epic (or equivalently extremal-epic) families. The resulting 2-category $EX_\kappa$ is a full [[reflective subcategory|reflective]] sub-2-category of the 2-category $SITE_\kappa$ of [[∞-ary sites]]. The reflector is called [[exact completion]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ross Street]], ``The family approach to total cocompleteness and toposes.'' Transactions of the AMS 284 no. 1, 1984 \end{itemize} \begin{itemize}% \item [[Michael Shulman]], ``Exact completions and small sheaves''. \emph{Theory and Applications of Categories}, Vol. 27, 2012, No. 7, pp 97-173. \href{http://www.tac.mta.ca/tac/volumes/27/7/27-07abs.html}{Free online} \end{itemize} [[!redirects familial regularity and exactness]] [[!redirects familial regularity]] [[!redirects familial exactness]] [[!redirects familially exact category]] [[!redirects familially regular category]] [[!redirects ∞-ary exact category]] [[!redirects ∞-ary exact categories]] [[!redirects k-ary exact category]] [[!redirects k-ary exact categories]] [[!redirects ∞-ary exactness]] [[!redirects k-ary exactness]] [[!redirects ∞-ary regular category]] [[!redirects ∞-ary regular categories]] [[!redirects k-ary regular category]] [[!redirects k-ary regular categories]] [[!redirects ∞-ary regularity]] [[!redirects k-ary regularity]] [[!redirects ∞-ary pretopos]] [[!redirects ∞-ary pretoposes]] [[!redirects ∞-ary pretopoi]] [[!redirects k-ary pretopos]] [[!redirects k-ary pretoposes]] [[!redirects k-ary pretopoi]] [[!redirects ∞-ary coherent category]] [[!redirects ∞-ary coherent categories]] [[!redirects k-ary coherent category]] [[!redirects k-ary coherent categories]] [[!redirects ∞-ary regular and exact categories]] \end{document}