\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{1-category equipped with relations} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{12categories_equipped_with_proarrows}{(1,2)-categories equipped with proarrows}\dotfill \pageref*{12categories_equipped_with_proarrows} \linebreak \noindent\hyperlink{1categories_equipped_with_relations}{1-categories equipped with relations}\dotfill \pageref*{1categories_equipped_with_relations} \linebreak \noindent\hyperlink{cartesian_1categories_equipped_with_relations}{Cartesian 1-categories equipped with relations}\dotfill \pageref*{cartesian_1categories_equipped_with_relations} \linebreak \noindent\hyperlink{see_also}{See also}\dotfill \pageref*{see_also} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[2-category equipped with proarrows]] is a 2-category together with a 2-category of ``proarrows'' which are intended to generalize the arrows of $K$ in the same way that [[profunctors]] generalize the [[functors]] in [[Cat]]. Since profunctors are a [[categorification]] of [[relations]], it is natural to think of decategorifying such equipments to give a structure on a 1-category that equips it with ``relations''. We call this structure a \emph{1-category equipped with relations}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{12categories_equipped_with_proarrows}{}\subsubsection*{{(1,2)-categories equipped with proarrows}}\label{12categories_equipped_with_proarrows} Recall that a \emph{2-category equipped with proarrows} (aka ``proarrow equipment'' or ``equipment'') can be defined as a certain sort of [[double category]], with $\mathcal{V}(\underline{K}) = K$. If, in such a double category, any two squares with the same boundary are equal, we say that it is is a \textbf{(1,2)-category equipped with proarrows}, or a \textbf{(1,2)-category proarrow equipment}. This is equivalent to requiring that the 2-category of proarrows (and hence also the underlying 2-category of arrows) is [[locally posetal 2-category|locally posetal]], i.e. a (1,2)-category. For example, if $V$ is any [[quantale]], then $V Cat$ is naturally a (1,2)-category equipped with proarrows. In particular, taking $V=\mathbb{2}$, we have a (1,2)-category proarrow equipment whose objects are [[preorders]]. \hypertarget{1categories_equipped_with_relations}{}\subsubsection*{{1-categories equipped with relations}}\label{1categories_equipped_with_relations} A \textbf{1-category equipped with relations} is a (1,2)-category equipped with proarrows, regarded as a double category $\underline{K}$, together with an [[involution]] $\underline{K}^{h op} \cong \underline{K}$ which is (isomorphic to) the identity on objects and (vertical) arrows. Here $\underline{K}^{h op}$ denotes the horizontal opposite of a double category obtained by reversing the horizontal (pro-)arrows but not the vertical ones. We also call this structure a \textbf{relation equipment} or a \textbf{1-category proarrow equipment}. In particular, the definition implies that we have an involution $K \cong K^{co}$ which is the identity on objects and arrows, which for a (1,2)-category means that $K$ is actually (equivalent to) a 1-category. Note though that the 2-category of proarrows (which we now call ``relations'') is still (like [[Rel]]) a (1,2)-category, not necessarily a 1-category. For example, for any quantale $V$, the sub-2-category of $V Cat$ consisting of the \emph{symmetric} $V$-categories (those where $A(x,y) = A(y,x)$) is a 1-category equipped with relations. In particular, for $V=\mathbb{2}$, we have the relation equipment $\underline{Rel}$ of sets, functions, and binary relations. In general, we can think of a relation equipment as generalizing some of the properties of $\underline{Rel}$. For instance, internal relations in any [[regular category]] also form a relation equipment. \hypertarget{cartesian_1categories_equipped_with_relations}{}\subsection*{{Cartesian 1-categories equipped with relations}}\label{cartesian_1categories_equipped_with_relations} It is proven in \begin{itemize}% \item Carboni, Kelly, Wood, ``A 2-categorical approach to change of base and geometric morphisms, I'' (\href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1991__32_1/CTGDC_1991__32_1_47_0/CTGDC_1991__32_1_47_0.pdf}{PDF}) \end{itemize} that a (1,2)-category is a [[cartesian bicategory]] precisely when it is a [[cartesian object]] in a suitable 2-category of proarrow equipments (where we make a bicategory $M$ into an equipment by taking the proarrows to be those of $M$ and the arrows to be the ``maps'' in $M$, i.e. the morphisms having right adjoints). Here is a rough sketch of the argument, using the double-category description of equipments. \begin{utheorem} Let $\underline{K}$ be a 1-category equipped with relations, which is a [[cartesian object]] in the 2-category of relation equipments (that is, it is a \textbf{cartesian relation equipment}). Then $\mathcal{H}(\underline{K})$ is a cartesian bicategory. \end{utheorem} \begin{proof} That $\underline{K}$ is a cartesian object means, in particular, that it is a [[pseudomonoid]] in the 2-category of equipments. By lifting the coherence data from arrows to representable proarrows, it follows that $\mathcal{H}(\underline{K})$ is a monoidal 2-category. Being a cartesian object also gives a cartesian product on objects and proarrows, with diagonals $\Delta\colon X\to X\times X$, and lifting these arrows to representable proarrows $\Delta_\bullet$ and $\Delta^\bullet$ gives each object a commutative monoid and comonoid structure. Now for any proarrow $\phi\colon X\to Y$, the square \begin{displaymath} \itexarray{X & \overset{\phi}{\to} & Y\\ ^\Delta \downarrow & \Downarrow & \downarrow^\Delta\\ X\times X& \underset{\phi\times \phi}{\to} & Y\times Y} \end{displaymath} in $\underline{K}$ induces 2-cells, i.e. inequalities, $\Delta_\bullet \phi \le (\phi\times\phi)\Delta_\bullet$ and $\phi \Delta^\bullet \le \Delta^\bullet(\phi\times\phi)$. \end{proof} A [[bicategory of relations]] is a (1,2)-category which is a cartesian bicategory, and which also satisfies some additional conditions. We can also construct this structure starting from a relation equipment. \begin{utheorem} Let $\underline{K}$ be a relation equipment satisfying the hypotheses of the previous theorem, and suppose in addition that every proarrow $\phi\colon x\nrightarrow y$ in $\underline{K}$ can be written as $f_\bullet g^\bullet$ for some (vertical) arrows $f$ and $g$. (That is, ``tabulations'' in a certain sense exist.) Then $\mathcal{H}(\underline{K})$ is a [[bicategory of relations]]. \end{utheorem} \begin{proof} We first verify the axiom $\Delta^\bullet \Delta_\bullet = 1$. Since $\Delta^\bullet \Delta_\bullet$ is the restriction of $1_{X\times X}$ along $\Delta$ on both sides, it suffices to show that \begin{displaymath} \itexarray{X & \overset{1_X}{\to} & X\\ ^\Delta\downarrow &\Downarrow& \downarrow^\Delta\\ X\times X& \underset{1_{X\times X}}{\to} & X\times X} \end{displaymath} is a cartesian 2-cell in $\underline{K}$. But if we have any other square \begin{displaymath} \itexarray{A & \overset{\phi}{\to} & B\\ ^{(f,g)}\downarrow &\Downarrow& \downarrow^{(h,k)}\\ X\times X& \underset{1_{X\times X}}{\to} & X\times X} \end{displaymath} then $(f,g)$ factoring through $\Delta$ means that $f=g$, and likewise $h=k$. Composing the given square with the projection \begin{displaymath} \itexarray{X\times X & \overset{1_{X\times X}}{\to} & X\times X\\ \downarrow &\Downarrow & \downarrow\\ X& \underset{1_X}{\to} & X} \end{displaymath} (which comes from being a cartesian object in $Equipments$), we obtain a square \begin{displaymath} \itexarray{A & \overset{\phi}{\to} & B \\ ^f\downarrow &\Downarrow & \downarrow^g\\ X& \underset{1_X}{\to} & X} \end{displaymath} which factors the given square through the putative cartesian one. The factorization is unique since all 2-cells are unique. We now verify the Frobenius axiom $\Delta^\bullet \Delta_\bullet = (1\times \Delta_\bullet)(\Delta^\bullet \times 1)$. Since $\Delta$ is associative, we have a square \begin{displaymath} \itexarray{X & \overset{1_X}{\to} & X\\ ^\Delta\downarrow && \downarrow^\Delta\\ X\times X & \Downarrow & X\times X\\ ^{1\times \Delta}\downarrow && \downarrow^{\Delta\times 1}\\ X\times X\times X & \underset{1_{X\times X\times X}}{\to} & X\times X\times X} \end{displaymath} and therefore a square \begin{displaymath} \itexarray{X\times X & \overset{\Delta^\bullet \Delta_\bullet}{\to} & X\times X\\ ^{1\times \Delta}\downarrow && \downarrow^{\Delta\times 1}\\ X\times X\times X & \underset{1_{X\times X\times X}}{\to} & X\times X\times X} \end{displaymath} and it suffices to show that this is a cartesian 2-cell. So suppose given a square \begin{displaymath} \itexarray{A & \overset{\phi}{\to} & B\\ ^{(f,g,g)}\downarrow & \Downarrow & \downarrow^{(h,h,k)}\\ X\times X\times X & \underset{1_{X\times X\times X}}{\to} & X\times X\times X.} \end{displaymath} The fact that $g$ and $h$ appear twice is equivalent to saying that the left and right boundaries of this square factor through $1\times\Delta$ and $\Delta\times 1$, respectively. Now by assumption, $\phi = u_\bullet v^\bullet$ for some $u\colon C\to B$ and $v\colon C\to A$. Thus our square is equivalent to one \begin{displaymath} \itexarray{C & \overset{1_C}{\to} & C\\ ^{(f v,g v,g v)}\downarrow & \Downarrow & \downarrow^{(h u,h u,k u)}\\ X\times X\times X & \underset{1_{X\times X\times X}}{\to} & X\times X\times X.} \end{displaymath} But this is just a 2-cell in the vertical category $K$, which is a 1-category; hence we have $(f v,g v, g v) = (h u, h u, k u)$ and thus $f v = h u = g v = k u$. Calling their common value $m$, we thus have a composite square \begin{displaymath} \itexarray{C & = & C & = & C\\ ^{(m,m)}\downarrow && \downarrow^{m} && \downarrow^{(m,m)}\\ X\times X & \underset{\Delta^\bullet }{\to} & X & \underset{\Delta_\bullet}{\to} & X\times X} \end{displaymath} (since $\Delta m = (m,m)$) which gives us the desired factorization. The other Frobenius axiom is, of course, dual. \end{proof} \begin{ucorollary} If $\underline{K}$ is a relation equipment satisfying the hypotheses of the theorem, then $\mathcal{H}(\underline{K})$ is an [[allegory]]. \end{ucorollary} \begin{proof} It is shown \href{http://rfcwalters.blogspot.com/2009/10/categorical-algebras-of-relations.html}{here} that any bicategory of relations is an allegory. \end{proof} \hypertarget{see_also}{}\subsection*{{See also}}\label{see_also} Other attempted axiomatizations of the same idea ``something that acts like the category of relations in a regular category'' include: \begin{itemize}% \item [[allegory]] \item [[bicategory of relations]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A comparison of ``regular proarrow equipments'' with ``regular [[fibrations]] of [[subobjects]]'' is in \begin{itemize}% \item [[Finn Lawler]], \emph{Fibrations of predicates and bicategories of relations}, \href{http://arxiv.org/abs/1502.08017}{arXiv} \end{itemize} [[!redirects (1,2)-category equipment]] [[!redirects (1,2)-category equipped with proarrows]] [[!redirects 1-category equipped with proarrows]] [[!redirects relation equipment]] [[!redirects relation equipments]] [[!redirects 1-category relation equipment]] [[!redirects 1-category equipment]] [[!redirects 1-category equipments]] [[!redirects 1-category proarrow equipment]] [[!redirects (1,2)-category proarrow equipment]] \end{document}