\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{11d supergravity Lie 3-algebra} [[!redirects supergravity Lie 3-algebra]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_chevalleyeilenberg_algebra}{The Chevalley-Eilenberg algebra}\dotfill \pageref*{the_chevalleyeilenberg_algebra} \linebreak \noindent\hyperlink{hidden_super_lie_1algebra}{Hidden super Lie 1-algebra}\dotfill \pageref*{hidden_super_lie_1algebra} \linebreak \noindent\hyperlink{relation_to_m5brane_action_functional}{Relation to M5-brane action functional}\dotfill \pageref*{relation_to_m5brane_action_functional} \linebreak \noindent\hyperlink{Polyvector}{Relation to the 11-dimensional polyvector super Poincar\'e{}-algebra}\dotfill \pageref*{Polyvector} \linebreak \noindent\hyperlink{via_derivations}{Via derivations}\dotfill \pageref*{via_derivations} \linebreak \noindent\hyperlink{via_the_heisenberg_lie_3algebras}{Via the Heisenberg Lie 3-algebras}\dotfill \pageref*{via_the_heisenberg_lie_3algebras} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \emph{supergravity Lie 3-algebra} $\mathfrak{sugra}(10,1)$ or [[M2-brane]] extension $\mathfrak{m}2\mathfrak{brane}$ is a [[super L-∞ algebra]] that is a shifted [[∞-Lie algebra cohomology|extension]] \begin{displaymath} 0 \to b^2 \mathbb{R} \to \mathfrak{sugra}(10,1) \to \mathfrak{siso}(10,1) \to 0 \end{displaymath} of the [[super Poincare Lie algebra]] $\mathfrak{siso}(10,1)$ in 10+1 dimensions induced by the exceptional degree 4-[[Lie algebra cohomology|super Lie algebra cocycle]] \begin{displaymath} \mu_4 = \bar \psi \wedge \Gamma^{a b} \psi \wedge e_a \wedge e_b \;\; \in CE(\mathfrak{siso}(10,1)) \,. \end{displaymath} This is the same mechanism by which the [[String Lie 2-algebra]] is a shifted central extension of $\mathfrak{so}(n)$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_chevalleyeilenberg_algebra}{}\subsubsection*{{The Chevalley-Eilenberg algebra}}\label{the_chevalleyeilenberg_algebra} \begin{prop} \label{TheCEAlgebra}\hypertarget{TheCEAlgebra}{} The [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{sugra}(10,1))$ is generated on \begin{itemize}% \item elements $\{e^a\}$ and $\{\omega^{ a b}\}$ of degree $(1,even)$ \item a single element $c$ of degree $(3,even)$ \item and elements $\{\psi^\alpha\}$ of degree $(1,odd)$ \end{itemize} with the differential defined by \begin{displaymath} d_{CE} \, \omega^{a b} = \omega^a{}_b \wedge \omega^{b c} \end{displaymath} \begin{displaymath} d_{CE} \, e^{a } = \omega^a{}_b \wedge e^b + \frac{i}{2}\bar \psi \Gamma^a \psi \end{displaymath} \begin{displaymath} d_{CE} \, \psi = \frac{1}{4} \omega^{ a b} \Gamma_{a b} \psi \end{displaymath} \begin{displaymath} d_{CE} \, c = \frac{1}{2}\bar \psi \Gamma^{a b} \wedge \psi \wedge e_a \wedge e_b \,. \end{displaymath} \end{prop} \begin{quote}% (fill in details) \end{quote} \hypertarget{hidden_super_lie_1algebra}{}\subsubsection*{{Hidden super Lie 1-algebra}}\label{hidden_super_lie_1algebra} At the end of (\hyperlink{DAuriaFr82}{D'Auria-Fre 82}) the authors ask for a super Lie 1-algebra $\mathfrak{g}$, equipped with a degree-3 element $A$ in its [[Chevalley-Eilenberg algebra]], and equipped with a homomorphism $p\colon \mathfrak{g}\longrightarrow \mathbb{R}^{10,1\vert \mathbf{32}}$ such that the pullback of the 4-cocycle $\mu_4$ along $p$ is trivialized by $A$: \begin{displaymath} p^\ast \mu_4 = d_{CE}A \,. \end{displaymath} In the [[model structure on L-infinity algebras|homotopy theory of L-infinity algebra]] this means that \begin{displaymath} \itexarray{ \mathfrak{g} &\longrightarrow& \ast \\ {}^{\mathllap{p}} \downarrow &\swArrow_{\mathrlap{A}}& \downarrow \\ \mathbb{R}^{10,1\vert \mathbf{32}} &\underset{\mu_4}{\longrightarrow}& \mathbf{B}^3 \mathbb{R} } \,. \end{displaymath} Compare this to the characterization of $\mathfrak{sugra}(10,1)$ as the [[homotopy fiber]] of $\mu_4$, hence as the \emph{universal} solution to this situation \begin{displaymath} \itexarray{ \mathfrak{sugra}(10,1) &\longrightarrow& \ast \\ \downarrow &\swArrow_{}& \downarrow \\ \mathbb{R}^{10,1\vert \mathbf{32}} &\underset{\mu_4}{\longrightarrow}& \mathbf{B}^3 \mathbb{R} } \,. \end{displaymath} In any case, in (\hyperlink{DAuriaFr82}{D'Auria-Fre 82}) possible choices for $p \colon \mathfrak{g} \to \mathbb{R}^{10,1\vert\mathbf{32}}$ are found. Curiously, the bosonic [[body]] of $\mathfrak{g}$ is such that when adapted to a compactification to 4d, then it is the [[exceptional tangent bundle]] on which the [[U-duality]] group [[E7]] has a canonical action. In (\hyperlink{BAIPV04}{BAIPV 04}) these solutions are shown to extend to a 1-parameter family of solutions. Further comments are in (\hyperlink{AndrianopoliDAuriaRavera16}{Andrianopoli-D'Auria-Ravera 16}). \hypertarget{relation_to_m5brane_action_functional}{}\subsubsection*{{Relation to M5-brane action functional}}\label{relation_to_m5brane_action_functional} The supergravity Lie 3-algebra carries a 7-cocycle (the one that induces the [[supergravity Lie 6-algebra]]-extension of it). The corresponding WZW term is that of the [[M5-brane]] in its [[Green-Schwarz action functional]]-like formulation. [[!include brane scan]] \hypertarget{Polyvector}{}\subsubsection*{{Relation to the 11-dimensional polyvector super Poincar\'e{}-algebra}}\label{Polyvector} \hypertarget{via_derivations}{}\paragraph*{{Via derivations}}\label{via_derivations} \begin{prop} \label{}\hypertarget{}{} Let $\mathfrak{der}(\mathfrak{sugra}(10,1))$ be the [[automorphism ∞-Lie algebra]] of $\mathfrak{sugra}(10,1)$. This is a [[dg-Lie algebra]]. Write $\mathfrak{der}(\mathfrak{sugra}(10,1))_0$ for the ordinary [[Lie algebra]] in degree 0. This is [[isomorphic]] to the polyvector-extension of the [[super Poincaré Lie algebra]] (see there) in $d = 10+1$ -- the ``[[M-theory super Lie algebra]]'' -- with ``2-brane central charge'': the Lie algebra spanned by generators $\{P_a, Q_\alpha, J_{a b}, Z^{a b}\}$ and graded Lie brackets those of the [[super Poincaré Lie algebra]] as well as \begin{displaymath} [Q_\alpha, Q_\beta] = i (C \Gamma^a)_{\alpha \beta} P_a + (C \Gamma_{a b})Z^{a b} \end{displaymath} \begin{displaymath} [Q_\alpha, Z^{a b}] = 2 i (C \Gamma^{[a})_{\alpha \beta}Q^{b]\beta} \end{displaymath} etc. \end{prop} This observation appears implicitly in (\hyperlink{Castellani05}{Castellani 05, section 3.1}), see (\hyperlink{FSS13}{FSS 13}). \begin{proof} With the presentation of the [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{sugra}(10,1))$ as in prop. \ref{TheCEAlgebra} above, the generators are identified with [[derivation]]s on $CE(\mathfrak{sugra}(10,1))$ as \begin{displaymath} P_a = [d_{CE}, \frac{\partial}{\partial e^a} ] \end{displaymath} and \begin{displaymath} Q_\alpha = [d_{CE}, \frac{\partial}{\partial \psi^\alpha} ] \end{displaymath} and \begin{displaymath} J_{a b} = [d_{CE}, \frac{\partial}{\partial \omega^{a b}} ] \end{displaymath} and \begin{displaymath} Z^{a b} = [d_{CE}, e^a \wedge e^b \wedge \frac{\partial}{\partial c}] \end{displaymath} etc. With this it is straightforward to compute the commutators. Notably the last term in \begin{displaymath} [Q_\alpha, Q_\beta] = i (C \Gamma^a)_{\alpha \beta} P_a + (C \Gamma_{a b})Z^{a b} \end{displaymath} arises from the contraction of the 4-cocycle $\bar \psi \Gamma^{a b} \wedge \psi \wedge e_a \wedge e_b$ with $\frac{\partial}{\partial \psi^\alpha}\wedge \frac{\partial}{\partial \psi^\beta}$. \end{proof} \hypertarget{via_the_heisenberg_lie_3algebras}{}\paragraph*{{Via the Heisenberg Lie 3-algebras}}\label{via_the_heisenberg_lie_3algebras} (\ldots{}) \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} The field configurations of 11-dimensional [[supergravity]] may be identified with [[∞-Lie algebra-valued forms]] with values in $\mathfrak{sugra}(10,1)$. See [[D'Auria-Fre formulation of supergravity]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[supergravity Lie 6-algebra]] $\to$ \textbf{supergravity Lie 3-algebra} $\to$ [[super Poincaré Lie algebra]] \begin{itemize}% \item [[4d supergravity Lie 2-algebra]] \item [[extended supersymmetry]] \item [[type II supergravity Lie 2-algebra]] \item [[type II supersymmetry algebra]] \item [[M-theory supersymmetry algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The [[Chevalley-Eilenberg algebra]] of $\mathfrak{sugra}(10,1)$ first appears in (3.15) of \begin{itemize}% \item [[Riccardo D'Auria]], [[Pietro Fré]], \emph{[[GeometricSupergravity.pdf:file]]}, Nuclear Physics B201 (1982) \end{itemize} and later in the textbook \begin{itemize}% \item [[Leonardo Castellani]], [[Riccardo D'Auria]], [[Pietro Fré]], \emph{[[Supergravity and Superstrings - A Geometric Perspective]]} \end{itemize} The manifest interpretation of this as a [[Lie 3-algebra]] and the supergravity field content as [[∞-Lie algebra valued forms]] with values in this is mentioned in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:L-∞ algebra connections]]} \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The brane bouquet|Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields]]} \end{itemize} A systematic study of the super-[[Lie algebra cohomology]] involved is in \begin{itemize}% \item [[John Baez]], [[John Huerta]], \emph{Division algebras and supersymmetry I} (\href{http://arxiv.org/abs/0909.0551}{arXiv:0909.0551}) \item [[John Baez]], [[John Huerta]], \emph{Division algebras and supersymmetry II} (\href{http://arxiv.org/abs/1003.3436}{arXiv:1003.34360}) \end{itemize} See also [[division algebra and supersymmetry]]. Further discussion of its ``hidden'' super Lie algebra includes \begin{itemize}% \item [[Igor Bandos]], [[José de Azcárraga]], J.M. Izquierdo, M. Picon, O. Varela, \emph{On the underlying gauge group structure of D=11 supergravity}, Phys.Lett.B596:145-155,2004 (\href{http://arxiv.org/abs/hep-th/0406020}{arXiv;hep-th/0406020}) \item [[Igor Bandos]], [[Jose de Azcarraga]], Moises Picon, Oscar Varela, \emph{On the formulation of $D=11$ supergravity and the composite nature of its three-from field}, Annals Phys. 317 (2005) 238-279 (\href{https://arxiv.org/abs/hep-th/0409100}{arXiv:hep-th/0409100}) \item L. Andrianopoli, [[Riccardo D'Auria]], L. Ravera, \emph{Hidden Gauge Structure of Supersymmetric Free Differential Algebras} (\href{https://arxiv.org/abs/1606.07328}{arXiv:1606.07328}) \end{itemize} The computation of the automorphism Lie algebra of $\mathfrak{sugra}(10,1)$ is in \begin{itemize}% \item [[Leonardo Castellani]], \emph{Lie derivatives along antisymmetric tensors and the M-theory superalgebra}, J. Phys. Math. Volume 3 (2011), 1-7. (\href{http://arxiv.org/abs/hep-th/0508213}{arXiv:hep-th/0508213}) \end{itemize} A similar argument with more explicit use of the Lie 3-algebra as underlying the [[Green-Schwarz action functional|Green-Schwarz-like action functional]] for the [[M5-brane]] is in \begin{itemize}% \item [[Dmitri Sorokin]], [[Paul Townsend]], \emph{M-theory superalgebra from the M-5-brane}, Phys. Lett. B412 (1997) 265-273 (\href{http://arxiv.org/abs/hep-th/9708003}{arXiv:hep-th/9708003}) \end{itemize} [[!redirects m2brane]] \end{document}