\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{12-dimensional supergravity} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{fields_and_quanta}{}\paragraph*{{Fields and quanta}}\label{fields_and_quanta} [[!include fields and quanta - table]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{The21Brane}{The $2+1$-brane in $10+2$ dimensions}\dotfill \pageref*{The21Brane} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{on_the_brane_in__dimensions}{On the $2+1$-brane in $10+2$ dimensions}\dotfill \pageref*{on_the_brane_in__dimensions} \linebreak \noindent\hyperlink{on_supergravity_in__dimensions}{On supergravity in $9 + 3$ dimensions}\dotfill \pageref*{on_supergravity_in__dimensions} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There is a sensible [[theory (physics)|theory]] of [[supergravity]] in a total of 12 [[spacetime]] [[dimensions]]. Even though this requires an exotic non-[[Lorentzian signature]] of $(10,2)$ (hence with a ``2-dimensional [[time]]'') it has been argued that this is a better starting point for obtaining low-dimensional [[supergravity]] theory by [[KK-compactification]], since it yields some lower-dimensional theories that are missed when starting with [[11-dimensional supergravity]], notably [[type IIB supergravity]] in 10 dimensions, hence relates to [[F-theory]] as [[11-dimensional supergravity]] relates to [[M-theory]] (e.g. \hyperlink{Nishino97b}{Nishino 97b}, \hyperlink{Hewson97}{Hewson 97}). (A theory in $(9,3)$ signature has also been proposed in (\hyperlink{Kriz05}{Kriz 05}).) It is an oft-repeated [[folklore]] that the highest number of [[spacetime]] [[dimensions]] for [[supergravity]] to make sense is 11, realized by [[11-dimensional supergravity]]. However, there are some assumptions that go into this conclusion. First of all, the argument goes that after [[KK-compactification]] to 4-dimensions there must not appear [[supermultiplets]] with [[mass]]-less fields of [[spin]] $\gt 2$, since another [[folklore]] argument states that [[quantum field theory]] in $3+1$ dimensions with fields of spin larger than 2 is inconsistent. (This in turn needs further qualification: Consistent [[quantum field theory]] with an \emph{infinite tower} of higher spin fields \emph{is} consistent, this is called \emph{[[higher spin gauge theory]]} arising as the vanishing [[string tension]]-[[limit of a sequence|limit]] of [[string field theory]]. Ever since this discovery, the modified [[folklore]] is that field theories with a finite number of higher spin fields is inconsistent.) Since acting with a [[supersymmetry]] generator on elements of a [[supermultiplet]] increases spin by 1/2, this argument requires that there are at most $(2 - (-2)) \times 2 = 8$ super charges in (3+1)d, hence corresponding to [[N=8 d=4 supergravity]]. This, in turn, requires, by the rules of [[KK-compactification]], that \begin{enumerate}% \item there be only a single supercharge in dimension $10+1$, since the [[irreducible representation|irreducible]] [[real spin representation]] of $Spin(10,1)$ has real dimension 32, which [[branching rule|branches]] as $\mathbf{32} \mapsto 8 \cdot \mathbf{4}$ under $Spin(3,1) \hookrightarrow Spin(10,1)$; \item there cannot be any supercharge in dimension $11+1$, since the [[irreducible representation|irreducible]] [[real spin representation]] of $Spin(11,1)$ has real dimension 64, which [[branching rule|branches]] as $\mathbf{64} \mapsto 16 \cdot \mathbf{4}$ under $Spin(3,1) \hookrightarrow Spin(11,1)$. \end{enumerate} However, the second conclusion here is evaded by a change of spacetime signature: The [[irreducible representation|irreducible]] [[real spin representation]] of $Spin(10,2)$ still happens to be of dimension 32 and still [[branching rule|branches]] as $\mathbf{32} \mapsto 8 \cdot \mathbf{4}$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{The21Brane}{}\subsubsection*{{The $2+1$-brane in $10+2$ dimensions}}\label{The21Brane} There is supposed to be a consistent fundamental [[super p-brane]] on $10+2$-dimensional supergravity backgrounds, whose [[double dimensional reduction]] yields the [[M2-brane]] in [[11-dimensional supergravity]] and further the [[superstrings]] not just of [[type IIA supergravity]] but also (?) of [[type IIB supergravity]]. The [[worldvolume]] of this [[p-brane]] has 4 spacetime dimensions with signature $(2,2)$. Therefore some authors refer to this as a ``2+2''-brane, even though this does not mesh well with the naming convention of $p$-branes in Lorentzian signature. Since Lorentzian $p$-branes have $(p+1)$-dimensional worldvolume, the systematic naming here would be ``2+1''-brane. See (\hyperlink{BlencoweDuff88}{Blencowe-Duff 88, section 7}, \hyperlink{HewsonPerry96}{Hewson-Perry 96}, \hyperlink{Nishino97b}{Nishino 97b}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[F-theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Leonardo Castellani]], [[Pietro Fré]], F. Giani, K. Pilch, [[Peter van Nieuwenhuizen]], \emph{Beyond $d=11$ Supergravity and Cartan Integrable Systems}, Phys.Rev. D26 (1982) 1481 (\href{http://inspirehep.net/record/11999}{spire:11999}) \item [[Itzhak Bars]], \emph{Supersymmetry, p-brane duality and hidden space-time dimensions}, Phys. Rev. D54, 5203 (1996) (\href{https://arxiv.org/abs/hep-th/9604139}{arXiv: hep-th/9604139}). \item [[Itzhak Bars]], \emph{S-Theory}, Phys.Rev. D55 (1997) 2373-2381 (\href{https://arxiv.org/abs/hep-th/9607112}{arXiv:hep-th/9607112}) \item [[Hitoshi Nishino]], \emph{Supergravity in 10 + 2 Dimensions as Consistent Background for Superstring}, (\href{https://arxiv.org/abs/hep-th/9703214}{arXiv:hep-th/9703214}) \item [[Hitoshi Nishino]], \emph{N=2 Chiral Supergravity in (10 + 2)-Dimensions As Consistent Background for Super (2 + 2)-Brane}, Phys. Lett. B437 (1998) 303-314 (\href{https://arxiv.org/abs/hep-th/9706148}{arXiv:hep-th/9706148}) \item Stephen Hewson, \emph{An approach to F-theory}, Nucl. Phys. B534 (1998) 513-530 (\href{https://arxiv.org/abs/hep-th/9712017}{arXiv:hep-th/9712017}) \item [[Hitoshi Nishino]], \emph{Supergravity Theories in $D \geq 12$ Coupled to Super p-Branes}, Nucl.Phys. B542 (1999) 217-261 (\href{https://arxiv.org/abs/hep-th/9807199}{arXiv:hep-th/9807199}) \item Stephen Hewson, \emph{On supergravity in $(10,2)$} (\href{https://arxiv.org/abs/hep-th/9908209}{arXiv:hep-th/9908209}) \item Tatsuya Ueno, \emph{BPS States in 10+2 Dimensions}, JHEP 0012:006, 2000 (\href{https://arxiv.org/abs/hep-th/9909007}{arXiv:hep-th/9909007}) \item [[Leonardo Castellani]], \emph{A locally supersymmetric SO(10,2) invariant action for D=12 supergravity}, (\href{https://arxiv.org/abs/1705.00638}{arXiv:1705.00638}) \end{itemize} \hypertarget{on_the_brane_in__dimensions}{}\subsubsection*{{On the $2+1$-brane in $10+2$ dimensions}}\label{on_the_brane_in__dimensions} \begin{itemize}% \item [[Miles Blencowe]], [[Mike Duff]], \emph{Supermembranes and the Signature of Space-time}, Nucl. Phys. B310 (1988) 387-404 (\href{inspirehep.net/record/262142}{spire:262142}, , \href{http://inspirehep.net/record/262142/files/cer-000099708.pdf}{pdf}) \item S. F. Hewson, M. J. Perry, \emph{The twelve dimensional super $(2+2)$-brane}, Nucl.Phys. B492 (1997) 249-277 (\href{https://arxiv.org/abs/hep-th/9612008}{arXiv:hep-th/9612008}) \item \hyperlink{Nishino97b}{Nishino 97b} \end{itemize} \hypertarget{on_supergravity_in__dimensions}{}\subsubsection*{{On supergravity in $9 + 3$ dimensions}}\label{on_supergravity_in__dimensions} \begin{itemize}% \item [[Igor Kriz]], \emph{Some remarks on fundamental physical F-theory}, (\href{https://arxiv.org/abs/hep-th/0508046}{arXiv:hep-th/0508046}) \end{itemize} [[!redirects 12d supergravity]] \end{document}