\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{strict_2categories}{Strict 2-categories}\dotfill \pageref*{strict_2categories} \linebreak \noindent\hyperlink{Weak}{General 2-categories}\dotfill \pageref*{Weak} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{double_nerve}{Double nerve}\dotfill \pageref*{double_nerve} \linebreak \noindent\hyperlink{ModelCategoryStructure}{Model category structure}\dotfill \pageref*{ModelCategoryStructure} \linebreak \noindent\hyperlink{FreeResolution}{Free resolutions}\dotfill \pageref*{FreeResolution} \linebreak \noindent\hyperlink{2categorical_concepts}{2-categorical concepts}\dotfill \pageref*{2categorical_concepts} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of a \emph{2-category} generalizes that of [[category]]: a 2-category is a [[higher category theory|higher category]], where on top of the objects and morphisms, there are also 2-morphisms. A 2-category consists of \begin{itemize}% \item [[objects]]; \item 1-[[morphisms]] between objects; \item [[2-morphisms]] between morphisms. \end{itemize} The morphisms can be [[composition|composed]] along the objects, while the 2-morphisms can be composed in two different directions: along objects -- called [[horizontal composition]] -- and along morphisms -- called [[vertical composition]]. The composition of morphisms is allowed to be associative only up to [[coherent]] [[associator]] 2-morphisms. 2-Categories are also a [[horizontal categorification]] of [[monoidal categories]]: they are like monoidal categories with many objects. 2-Categories provide the context for discussing \begin{itemize}% \item [[adjunction]]s; \item [[monad]]s. \end{itemize} The concept of 2-category generalizes further in [[higher category theory]] to [[n-categories]], which have [[k-morphism]]s for all $k\le n$. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{strict_2categories}{}\subsubsection*{{Strict 2-categories}}\label{strict_2categories} The easiest definition of 2-category is that it is a category [[enriched category|enriched]] over the [[cartesian monoidal category]] [[Cat]]. Thus it has a collection of objects, and for each pair of objects a category $hom(x,y)$. The objects of these hom-categories are the morphisms, and the morphisms of these hom-categories are the 2-morphisms. This produces the classical notion of [[strict 2-category]]. \hypertarget{Weak}{}\subsubsection*{{General 2-categories}}\label{Weak} For some purposes, strict 2-categories are too strict: one would like to allow composition of morphisms to be associative and unital only up to coherent invertible 2-morphisms. A direct generalization of the above ``enriched'' definition produces the classical notion of [[bicategory]]. One can also obtain notions of 2-category by specialization from the case of higher categories. Specifically, if we fix a meaning of $\infty$-[[infinity-category|category]], however weak or strict we wish, then we can define a \textbf{$2$-category} to be an $\infty$-category such that every 3-morphism is an [[equivalence]], and all parallel pairs of $j$-morphisms are equivalent for $j \geq 3$. It follows that, up to equivalence, there is no point in mentioning anything beyond $2$-morphisms, except whether two given parallel $2$-morphisms are equivalent. In some models of $\infty$-categories, it is possible to make this precise by demanding that all parallel pairs of $j$-morphisms are actually \emph{equal} for $j\geq 3$, producing a simpler notion of 2-category in which we can speak about [[equality]] of 2-morphisms instead of equivalence. (This is the case for both strict $2$-categories and bicategories.) All of the above definitions produce ``equivalent'' theories of 2-category, although in some cases (such as the fact that every bicategory is equivalent to a strict 2-category) this requires some work to prove. On the nLab, we often use the word ``2-category'' in the general sense of referring to whatever model one may prefer, but usually one in which composition is weak; a [[bicategory]] is an adequate definition. One should beware, however, that in the literature it is common for ``2-category'' to refer only to \emph{strict} 2-categories. A 2-category in which all 1-morphisms and 2-morphisms are invertible is a [[2-groupoid]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The archetypical 2-category is [[Cat]], the 2-category whose \begin{itemize}% \item objects are [[categories]]; \item morphisms are [[functor]]s; \item 2-morphisms are [[natural transformation]]; horizontal composition of 2-morphisms is the [[Godement product]]. \end{itemize} This happens to be a [[strict 2-category]]. \item More generally, for $V$ any enriching category (such as a Benabou [[cosmos]]), there is a 2-category $V Cat$ whose \begin{itemize}% \item objects are $V$-[[enriched categories]]; \item morphisms are $V$-enriched functors; and \item 2-morphisms are $V$-natural transformations. \end{itemize} \item On the other hand, for any such $V$ we also have a [[bicategory]] $V$-[[Prof]] whose \begin{itemize}% \item objects are $V$-[[enriched categories]]; \item morphisms are $V$-[[profunctor]]s; and \item 2-morphisms are natural transformations between these. \end{itemize} \item If $C$ is a category with [[pullbacks]], then there is a bicategory [[Span]]$(C)$ whose \begin{itemize}% \item objects are the objects of $C$; \item morphisms are [[spans]] in $C$; and \item 2-morphisms are morphisms of spans. \end{itemize} \item Every [[monoidal category]] $C$ may be thought of as a [[bicategory]] $\mathbf{B}C$ (its [[delooping]]). This has \begin{itemize}% \item a single object $\bullet$; \item morphisms are the objects of $C$: $(\mathbf{B}C)_1 = C_0$; \item 2-morphisms are the morphisms of $C$ : $(\mathbf{B}C)_2 = C_1$; \end{itemize} [[horizontal composition]] in $\mathbf{B}C$ is the [[tensor product]] in $C$ and [[vertical composition]] in $\mathbf{B}C$ is composition in $C$. Conversely, every 2-category with a single object comes from a monoidal category this way, so the concepts are effectively equivalent. (Precisely: the 2-category of \emph{pointed} 2-categories with a single object is equivalent to that of monoidal categories). For more on this relation see [[delooping hypothesis]], [[k-tuply monoidal n-category]], and [[periodic table]]. \item Every [[2-groupoid]] is a 2-category. For instance \begin{itemize}% \item for $A$ any [[abelian group]], the double [[delooping]] $\mathbf{B}^2 A$ is the strict 2-category with a single object, a single 1-morphisms, set of 2-moprhisms being $A$ and both horizontal composition as well as [[vertical composition]] being the product in $A$. \item for $G$ any [[2-group]], its single [[delooping]] is a 2-groupoid with a single object. \end{itemize} \item Every [[topological space]] has a [[path 2-groupoid]]. \item Every [[(∞,2)-category]] has a \textbf{homotopy 2-category}, obtained by dividing out all 3-morphisms and higher. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{double_nerve}{}\subsubsection*{{Double nerve}}\label{double_nerve} An ordinary [[category]] has a [[nerve]] which is a [[simplicial set]]. For 2-categories one may consider their [[double nerve]] which is a [[bisimplicial set]]. There is also a 2-nerve. (\hyperlink{LackPaoli}{LackPaoli}) (\ldots{}) \hypertarget{ModelCategoryStructure}{}\subsubsection*{{Model category structure}}\label{ModelCategoryStructure} There is a [[model category]] structure on 2-categories -- sometimes known as the [[folk model structure]] -- that models the [[(2,1)-category]] underlying [[2Cat]] (\hyperlink{LackFolkModel}{Lack}). For strict 2-categories this is the restriction of the corresponding [[folk model structure]] on [[strict omega-categories]]. \begin{itemize}% \item The weak equivalences are the [[2-functor]]s that are equivalences of 2-categories. \item The acyclic fibrations are the [[k-surjective functor]]s for all $k$. \end{itemize} \hypertarget{FreeResolution}{}\paragraph*{{Free resolutions}}\label{FreeResolution} \textbf{Theorem} A strict 2-category $C$ is cofibrant precisely if the underlying 1-category $C_1$ is a [[free category]]. This is theorem 4.8 in (\hyperlink{LackStrict}{LackStrict}). This is a special case of the more general statement that free strict $\omega$-categories are given by [[computad]]s. \textbf{Example (free resolution of a 1-category).} Let $C$ be an ordinary category (a 1-category) regarded as a strict 2-category. Then the cofibrant resolution $\hat C \stackrel{\simeq}{\to} C$ is the strict 2-category given as follows: \begin{itemize}% \item the objects of $\hat C$ are those of $C$; \item the morphisms of $\hat C$ are finite sequences of composable morphisms of $C$, and composition is concatenation of such sequences (hence $(\hat C)_1$ is the [[free category]] on the [[quiver]] underlying $C$); \item the 2-morphisms of $\hat C$ are \emph{generated} from 2-morphisms $c_{f,g}$ of the form \begin{displaymath} \itexarray{ && y \\ & {}^{\mathllap{f}}\nearrow &\Downarrow^{c_{f,g}}& \searrow^{\mathrlap{g}} \\ x && \underset{g \circ_C f }{\to} && z } \end{displaymath} and their formal inverses \begin{displaymath} \itexarray{ && y \\ & {}^{\mathllap{f}}\nearrow &\Uparrow^{c_{f,g}^{-1}}& \searrow^{\mathrlap{g}} \\ x && \underset{g \circ_C f }{\to} && z } \end{displaymath} for all composable $f,g \in Mor(C)$ with composite (in $C$!) $g \circ_C f$; subject to the \emph{relation} that for all composable triples $f,g,h \in Mor(C)$ the following equation of 2-morphisms holds \begin{displaymath} \itexarray{ y &\to& &\stackrel{g}{\to}& &\to& && z \\ \uparrow &\seArrow^{c_{f,g}}& && & \nearrow & && \downarrow \\ {}^{\mathllap{f}}\uparrow && & \nearrow & &&&& \downarrow^{\mathrlap{h}} \\ \uparrow & \nearrow & && &\Downarrow^{c_{h,(g\circ_C f)}}& && \downarrow \\ x &\to& &\underset{h \circ (g \circ_C f)}{\to}& &\to& &\to& w } \;\;\; = \;\;\; \itexarray{ y &\to& &\stackrel{g}{\to}& &\to& && z \\ \uparrow &\searrow& && & & &\swArrow_{c_{g,h}}& \downarrow \\ {}^{\mathllap{f}}\uparrow && & \searrow & &&&& \downarrow^{\mathrlap{h}} \\ \uparrow &\Downarrow_{c_{f,(g \circ_C h)}}& && &\searrow& && \downarrow \\ x &\to& &\underset{( h \circ_C g) \circ f}{\to}& &\to& &\to& w } \end{displaymath} \end{itemize} \textbf{Observation} Let $D$ be any strict 2-catgeory. Then a [[pseudofunctor]] $C \to D$ is the same as a strict 2-functor $\hat C \to D$. \hypertarget{2categorical_concepts}{}\subsection*{{2-categorical concepts}}\label{2categorical_concepts} \textbf{extra properties} \begin{itemize}% \item [[regular 2-category]] \item [[exact 2-category]] \item [[coherent 2-category]] \item [[extensive 2-category]] \item [[2-pretopos]] \item [[2-topos]] \end{itemize} \textbf{types of morphisms} \begin{itemize}% \item [[subcategory]] \item [[faithful morphism]] \item [[fully faithful morphism]] \item [[conservative morphism]] \item [[pseudomonic morphism]] \item [[discrete morphism]] \end{itemize} \textbf{specific versions} \begin{itemize}% \item globular [[strict 2-category]] \item [[bicategory]] \end{itemize} \textbf{limit notions} \begin{itemize}% \item [[2-limit]] \item [[strict 2-limit]] \item [[flexible limit]] \item [[PIE limit]] \end{itemize} \textbf{model structures} \begin{itemize}% \item [[canonical model structure]] \item [[2-trivial model structure]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[0-category]], [[(0,1)-category]] \item [[category]] \item \textbf{2-category} [[equivalence in a 2-category]] [[localization of a 2-category]] \item [[3-category]] \item [[n-category]] \item [[(∞,0)-category]] \item [[(∞,1)-category]] \item [[(∞,2)-category]] \item [[(∞,n)-category]] \item [[(n,r)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A brief account of the definition is in \begin{itemize}% \item [[Ross Street]], \emph{Encyclopedia article on 2-categories and bicategories} (\href{http://www.maths.mq.edu.au/~street/Encyclopedia.pdf}{pdf}) \end{itemize} A more detailed account of the definition, including a discussion of its [[coherence theorem]], is in \begin{itemize}% \item [[Tom Leinster]], \emph{Basic bicategories} (\href{http://arxiv.org/abs/math/9810017}{arXiv:9810017}) \end{itemize} Some 2-category theory, including [[2-limit]]s/2-colimit is discussed in \begin{itemize}% \item [[Steve Lack]], \emph{A 2-categories companion} (\href{http://arxiv.org/abs/math/0702535}{arXiv:0702535}) \end{itemize} and \begin{itemize}% \item [[John Power]], \emph{2-Categories} (\href{http://www.brics.dk/NS/98/7/BRICS-NS-98-7.pdf}{pdf}) \end{itemize} An older reference which introduces some of the basic notions is \begin{itemize}% \item [[Max Kelly]] and [[Ross Street]], \emph{Review of the elements of 2-categories}, Sydney Category Seminar 1972/1973, LNM 420 \end{itemize} A relation between bicategories and Tamsamani weak 2-categories is established in \begin{itemize}% \item [[Steve Lack]], [[Simona Paoli]], \emph{2-nerves for bicategories} (\href{http://arxiv.org/abs/math/0607271}{arXiv}) \end{itemize} The reverse construction is in \begin{itemize}% \item [[Simona Paoli]], \emph{From Tamsamani weak 2-categories to bicategories} (\href{http://www.maths.mq.edu.au/~simonap/Bicategories_Rev_4.pdf}{arXiv}) \end{itemize} There is a [[model category]] structure on 2-categories -- the [[canonical model structure]] -- that models the [[(2,1)-category]] underlying [[2Cat]]: \begin{itemize}% \item [[Steve Lack]], \emph{A Quillen Model Structure for 2-Categories}, K-Theory 26: 171--205, 2002. (\href{http://www.maths.usyd.edu.au/u/stevel/papers/qmc2cat.html}{website}) \end{itemize} \begin{itemize}% \item [[Steve Lack]], \emph{A Quillen Model Structure for Biategories}, K-Theory 33: 185-197, 2004. (\href{http://www.maths.usyd.edu.au/u/stevel/papers/qmcbicat.html}{website}) \end{itemize} Discussion of weak 2-categories in the style of [[A-infinity categories]] is (using [[dendroidal sets]] to model the higher [[operads]]) in \begin{itemize}% \item Andor Lucacs, \emph{Dendroidal weak 2-categories} (\href{http://de.arxiv.org/abs/1304.4278}{arXiv:1304.4278}) \item [[Jonathan Chiche]], \emph{La th\'e{}orie de l'homotopie des 2-cat\'e{}gories}, thesis, \href{http://arxiv.org/abs/1411.6936}{arXiv}. \end{itemize} [[!redirects 2-category]] [[!redirects 2-categories]] [[!redirects weak 2-category]] [[!redirects weak 2-categories]] \end{document}