\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-crossed complex} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples:}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{crossed_complexes_and_2crossed_complexes}{Crossed complexes and 2-crossed complexes.}\dotfill \pageref*{crossed_complexes_and_2crossed_complexes} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[crossed complex|Crossed complexes]] are a useful extension of [[crossed module]]s allowing not only the encoding of an algebraic model for the [[homotopy 2-type]], but also information on the `[[complex of chains on the universal cover]]'. The category of crossed complexes is a [[monoidal closed category]] equivalent to various types of [[strict infinity-groupoid]]. To model the [[homotopy 3-type]] of a space, we can use either a [[2-crossed module]] or a [[crossed square]] (or various other algebraic models to be added some time in the future). A [[crossed complex]] is a `hybrid', part [[crossed module]] but with a `tail' which is a [[chain complex]]. What would be the `hybrid' between a 2-crossed module and a chain complex? Are there examples that are easily constructed? What sort of information do they encode? Are they easy to analyse, understand, \ldots{} and useful? \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{2-crossed complex} is a [[normal complex of groups]] \begin{displaymath} \ldots \to C_n \stackrel{\partial_n}{\longrightarrow} C_{n-1} \longrightarrow \ldots \longrightarrow C_0, \end{displaymath} together with a 2-crossed module structure given on $C_2\to C_1\to C_0$ by a Peiffer lifting function $\{ -,-\} : C_1\times C_1 \to C_2$, such that, on writing $\pi = Coker(C_1\to C_0)$, \begin{enumerate}% \item each $C_n$, $n\geq 3$ and $Ker \,\partial_2$ are $\pi$-modules and the $\partial_n$ for $n\geq 4$, together with the codomain restriction of $\partial_3$, are $\pi$-module homomorphisms; \item the $\pi$-module structure on $Ker \partial_2$ is the action induced from the $C_0$-action on $C_2$ for which the action of $\partial_1 C_1$ is trivial. \end{enumerate} A 2-crossed complex morphism is defined in the obvious way, being compatible with all the actions, the pairings and Peiffer liftings. We will denote by $2 Crs$, the corresponding category. \hypertarget{examples}{}\subsection*{{Examples:}}\label{examples} \begin{itemize}% \item Any 2-crossed module clearly gives a 2-crossed complex (with trivial `tail'). \item \emph{From simplicial groups to 2-crossed complexes}. If $G$ is a simplicial group, then \end{itemize} \begin{displaymath} \ldots \to C(G)_3 \to \frac{\mathcal{N}G_2}{d_0(\mathcal{N}G_3\cap D_3)} \to \mathcal{N}G_1\to \mathcal{N}G_0, \end{displaymath} has the structure of a 2-crossed complex, where $\mathcal{N}G$ is the [[Moore complex]] of $G$, $D_n$ is the subgroup of $G_n$ generated by the degenerate elements, and, for $n\gt2$, \begin{displaymath} {C}(G)_{n} = \frac{\mathcal{N}G_n}{(\mathcal{N}G_n\cap D_n)d_0(\mathcal{N}G_{n+1}\cap D_{n+1})}, \end{displaymath} is the $n$-dimensional term of the crossed complex, $C(G)$, associated to the simplicial group $G$ as in the entry [[crossed complex]] (in the section \textbf{From simplicial group(oid)s to crossed complexes}.) (There is an obvious extension of the group based definition above to a groupoid based one, and of this construction to one which takes as input a simplicially enriched groupoid.) The Moore complex of a simplicial group $G$ has the structure of a 2-crossed complex if and only if for each $n\gt 2$, $\mathcal{N}G_n\cap D_n$ is trivial. This means that the axioms of a [[group T-complex]] are almost satisfied, but not necessarily in dimension 2. \begin{itemize}% \item A quadratic chain complex as defined by H.J. Baues is a special case of a 2-crossed complex, satisfying additional (pre-crossed module) nilpotency condition at the level of the underlying pre-crossed module. (In fact the category of quadratic chain complexes is a reflective subcategory of the category of 2-crossed complexes.) In Baues' book referenced below, there is the construction of the fundamental quadratic chain complex of a pointed CW-complex. The reflection (or cotruncation) of this to the category of quadratic modules (i.e. 3-truncated quadratic chain complexes) faithfully represents the homotopy 3-type of a CW-space (at the level of spaces and maps between them). \item Graham Ellis defined the fundamental squared complex of a CW-complex from triad homotopy groups and generalised Whitehead products, and showed how Baues fundamental quadratic chain complex of a CW-complex can be obtained from it. A homotopy 2-crossed complex of a CW-complex can also be defined is the same way, see the work of Jo\~a{}o Faria Martins below. \end{itemize} \hypertarget{crossed_complexes_and_2crossed_complexes}{}\subsection*{{Crossed complexes and 2-crossed complexes.}}\label{crossed_complexes_and_2crossed_complexes} Any [[crossed complex]] can be given the structure of a 2-crossed complex simply by defining a trivial Peiffer lifting, $\{-,-\}$. As the Peiffer lifting covers the Peiffer commutators in $C_1$, and these are trivial (since the bottom of the crossed complex is a crossed module), this trivial Peiffer lifting works and gives a 2-crossed complex structure. This defines a functor from the category of crossed complexes to that of 2-crossed complexes. Any 2-crossed complex which has a Peiffer lifting that is trivial $\{x,y\} = 1$, for all $x,y \in C_1$) is isomorphic to a crossed complex in this sense. This functor, from $Crs$ to $2-Crs$, has a left adjoint which is the identity on the subcategory of $2-Crs$ with trivial Peiffer liftings, so $Crs$ is equivalent to a reflective subcategory of $2-Crs$ \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item See the [[Crossed Menagerie]], chapter 5. \item [[H.-J. Baues]], Combinatorial Homotopy and 4-Dimensional Complexes , de Gruyter Expositions in Mathematics 2, Walter de Gruyter, (1991). \item [[Graham Ellis]], Crossed squares and combinatorial homotopy. Mathematische Zeitschrift Volume 214, Number 1, 93-110, DOI: 10.1007/BF02572393 \item [[João Faria Martins]], Homotopies of 2-crossed complexes and the homotopy category of pointed 3-types (web \href{http://ferrari.dmat.fct.unl.pt/~jnm/Hom2XComplexes.pdf}{pdf}) \end{itemize} \end{document}