\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-crossed module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{from_simplicial_groups_to_2crossed_modules}{From simplicial groups to 2-crossed modules}\dotfill \pageref*{from_simplicial_groups_to_2crossed_modules} \linebreak \noindent\hyperlink{from_crossed_squares_to_2crossed_modules}{From crossed squares to 2-crossed modules}\dotfill \pageref*{from_crossed_squares_to_2crossed_modules} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References:}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{2-crossed module} encodes a semistrict 3-group -- a [[Gray-group]] -- in generalization of how a [[crossed module]] encodes a [[strict 2-group]]. A [[simplicial group]] whose [[Moore complex]] has length $1$ (that is, at most stuff in dimensions $0$ and $1$) will be the internal [[nerve]] of a strict $2$-[[2-group|group]] and the Moore complex will be the corresponding [[crossed module]]. What if we have a simplicial group whose Moore complex has at most stuff in dimensions $0$, $1$, and $2$; can we describe its structure in some similar way? Yes, and Conduch\'e{} provided a neat description of the structure involved. From the structure one can rebuild a simplicial group, a type of internal $2$-[[nerve]] construction. In other words, a $2$-crossed module \emph{is} the Moore complex of a $2$-[[truncated]] simplicial group. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{$2$-crossed module} is a [[normal complex of groups]] \begin{displaymath} L\stackrel{\partial_2}{\to} M \stackrel{\partial_1}{\to}N, \end{displaymath} together with an [[action]] of $N$ on all three groups and a mapping \begin{displaymath} \{ - ,- \} : M\times M \to L \end{displaymath} such that \begin{enumerate}% \item the action of $N$ on itself is by conjugation, and $\partial_2$ and $\partial_1$ are $N$-equivariant; \item for all $m_0,m_1 \in M$, \begin{displaymath} \partial_2\{m_0,m_1\} = \,^{\partial_1 m_0}m_1 . m_0m_1^{-1}m_0^{-1}; \end{displaymath} \item if $\ell_0,\ell_0 \in L$, then \begin{displaymath} \{\partial_2\ell_0,\partial_2\ell\} = [\ell_1,\ell_0]; \end{displaymath} \item if $\ell \in L$ and $m\in M$, then \begin{displaymath} \{m,\partial \ell\}\{\partial \ell,m\} = \,^{\partial m}\ell.\ell^{-1}; \end{displaymath} \item for all $m_0,m_1,m_2 \in M$, \begin{itemize}% \item $\{m_0,m_1m_2\} = \{m_0,m_1\}\{ \partial \{m_0,m_2\},(m_0m_1m_0^{-1})\}\{m_0,m_2\}$; \item $\{m_0m_1,m_2\} = \,^{\partial m_0}\{m_1,m_2\}\{m_0,m_1m_2m_1^{-1}\}$; \end{itemize} \item if $n\in N$ and $m_0,m_1 \in M$, then \begin{displaymath} \,^{n} \{m_0,m_1\} = \{ \,^{n}m_0, \,^{n}m_1\}. \end{displaymath} \end{enumerate} The pairing $\{ - ,- \} : M\times M \to L$ is often called the \textbf{Peiffer lifting} of the $2$-crossed module. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item In a $2$-crossed module as above the structure $\partial_2: L \to M$ is a [[crossed module]], but $\partial_1: M\to N$ may not be one, as the Peiffer identity need not hold. The \emph{[[Peiffer commutator]]}, which measures the failure of that identity, may not be trivial, but it will be a boundary element and the Peiffer lifting gives a structured way of getting an element in $L$ that maps down to it. \item It is sometimes useful to consider a [[crossed module]] as being a [[crossed complex]] of length 1 (i.e. on possibly non-trivial morphism only). Likewise one can consider a 2-crossed module as a special case of a [[2-crossed complex]]. Such a gadget is intuitively a 2-crossed module with a `tail', which is a chain complex of modules over the $\pi_0$ of the base 2-crossed module, much as a crossed complex is a crossed module together with a `tail'. \item A quadratic module, as developed by [[H.-J. Baues]], is a special case of a 2-crossed module, satisfying nilpotency conditions at the level of the underlying pre-crossed module (which is a close to being a crossed module as possible.) The fundamental quadratic module of a CW-complex yields an equivalence of categories between the category of pointed 3-types and the category of quadratic modules. \item A functorial fundamental 2-crossed module of a CW-complex can also be defined, by using Graham Ellis fundamental crossed square of a CW-complex; this is explained in the article of Jo\~a{}o Faria Martins, below. We can also define this fundamental 2-crossed module of a CW-complex, by using Kan's fundamental simplicial group of a CW-complex, and by applying the usual reflection from simplicial groups to simplicial groups of Moore complex of lenght two, known to be equivalent to 2-crossed modules. \item The homotopy theory of 2-crossed modules can be addressed by noting that 2-crossed modules, inducing a reflective subcategory of the category of simplicial groups, inherit a natural Quillen model structure, as explored in the article of Cabello and Garzon below. A version very close to the usual homotopy theory of crossed complexes was developed in the article of Joao Faria Martins below in a parallel way to the homotopy theory of [[quadratic module]]s and [[quadratic complex]]es as introduced by [[H. J. Baues]]. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Any [[crossed module]], $G_2 \stackrel{\delta }{\to}{G_1}$ gives a 2-crossed module, $L\stackrel{\partial_2}{\to} M \stackrel{\partial_1}{\to}N,$ by setting $L = 1$, the trivial group, and, of course, $M = G_2$, $N = G_1$. Conversely any 2-crossed module having trivial top dimensional group ($L=1$) `is' a crossed module. This gives an inclusion of the category of crossed modules into that of 2-crossed modules, as a [[reflective subcategory]]. The reflection is given by noting that, if \begin{displaymath} L\stackrel{\partial_2}{\longrightarrow} M \stackrel{\partial_1}{\longrightarrow}N \end{displaymath} is a 2-crossed module, then $Im\, \partial_2$ is a normal subgroup of $M$, and then there is an obvious induced crossed module structure on \begin{displaymath} \partial_1 : \frac{M}{Im\, \partial_2} \to N. \end{displaymath} But we can do better than this. More generally, let \begin{displaymath} \ldots \to 1 \to 1 \to C_3\stackrel{\partial_3}{\longrightarrow} C_2 \stackrel{\partial_2}{\longrightarrow}C_1, \end{displaymath} be a truncated [[crossed complex]] (of groups) in which all higher dimensional terms are trivial, then taking $L = C_3$, $M = C_2$ and $N = C_1$, with trivial Peiffer lifting, gives one a 2-crossed complex. Conversely suppose we have a 2-crossed module with trivial Peiffer lifting: $\{m_1,m_2\} = 1$ for all $m_1$, $m_2 \in M$, axiom 3 then shows that $L$ is an Abelian group, and similarly the other axioms can be analysed to show that the result is a truncated crossed complex. This gives: \begin{uprop} The category $Crs_{2]}$ of crossed complexes of length 2 is equivalent to the full subcategory of $2-CMod$ given by those 2-crossed modules with trivial Peiffer lifting. \end{uprop} Of course, the resulting `inclusion' has a left adjoint, which is quite fun to check out! (You kill off the subgroup of $L$ generated by the Peiffer lifting, \ldots{}. is that all?) \hypertarget{from_simplicial_groups_to_2crossed_modules}{}\subsubsection*{{From simplicial groups to 2-crossed modules}}\label{from_simplicial_groups_to_2crossed_modules} If $G$ is a simplicial group then \begin{displaymath} \frac{\mathcal{N}G_2}{d_0(\mathcal{N}G_3)} \to \mathcal{N}G_1\to \mathcal{N}G_0, \end{displaymath} is a 2-crossed module. (You are invited to find the Peiffer lifting!) \hypertarget{from_crossed_squares_to_2crossed_modules}{}\subsubsection*{{From crossed squares to 2-crossed modules}}\label{from_crossed_squares_to_2crossed_modules} Both [[crossed square|crossed squares]] and 2-crossed modules model all connected homotopy 3-types so one naturally asks how to pass from one description to the other. Going from crossed squares to 2-crossed modules is easy, so will be given here (going back is harder). Let \begin{displaymath} \itexarray{& L & {\to}^\lambda & M & \\ \lambda^\prime & \downarrow &&\downarrow & \mu\\ &N & {\to}_{\nu}& P & \\ } \end{displaymath} be a crossed square then $N$ acts on $M$ via $P$, so ${}^n m := {}^{\nu(n)}m$, and so we can form $M\rtimes N$ and the sequence \begin{displaymath} L\stackrel{((\lambda')^{-1},\lambda)}{\longrightarrow}M\rtimes N\stackrel{\mu\nu}{\longrightarrow}P \end{displaymath} is then a 2-crossed complex. (And, yes, these are actually group homomorphisms: $(\mu,\nu)(m,n) = \mu(m)\nu(n)$, the product of the two elements! Try it!) The full result and an explanation of what is going on here is given in \begin{itemize}% \item D. Conduch\'e{}, \emph{Simplicial Crossed Modules and Mapping Cones}, Georgian Math. J., 10, (2003), 623--636 \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group]] \item [[2-group]], [[crossed module]], [[differential crossed module]] \item [[3-group]], \textbf{2-crossed module} / [[crossed square]], [[differential 2-crossed module]] \item [[n-group]] \item [[∞-group]], [[simplicial group]], [[crossed complex]], [[hypercrossed complex]] \end{itemize} [[!redirects 2-crossed modules]] \hypertarget{references}{}\subsection*{{References:}}\label{references} \begin{itemize}% \item [[H. J. Baues]]: \emph{Combinatorial homotopy and $4$-dimensional complexes.} With a preface by Ronald Brown. de Gruyter Expositions in Mathematics, 2. Walter de Gruyter $\backslash$\& Co., Berlin, 1991. \item [[Julia G. Cabello]], [[Antonio R. Garzón]]: \emph{Quillen's theory for algebraic models of $n$-types}. Extracta Math. 9 (1994), no. 1, 42--47. ((EuDML](https://eudml.org/doc/38395)) \item [[P. Carrasco]] and [[T. Porter]], \emph{Coproduct of 2-crossed modules. Applications to a definition of a tensor product for 2-crossed complexes}, Collectanea Mathematica, (DOI) 10.1007/s13348-015-0156-9. \item [[Daniel Conduché]], \emph{Modules crois\'e{}s g\'e{}n\'e{}ralis\'e{}s de longueur $2$}, in: Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983). J. Pure Appl. Algebra 34 (1984), no. 2-3, 155--178. \item [[Joao Faria Martins]], \emph{Homotopy of 2-crossed complexes and the homotopy category of pointed 3-types}, (wed \href{http://ferrari.dmat.fct.unl.pt/~jnm/Hom2XComplexes.pdf}{pdf}) \item [[Graham Ellis]], \emph{Crossed squares and combinatorial homotopy}, Math. Z. 214 (1993), no. 1, 93--110. \end{itemize} \end{document}