\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{pseudofunctor}{Pseudofunctor}\dotfill \pageref*{pseudofunctor} \linebreak \noindent\hyperlink{lax_functor}{Lax Functor}\dotfill \pageref*{lax_functor} \linebreak \noindent\hyperlink{strict_2functor}{Strict 2-Functor}\dotfill \pageref*{strict_2functor} \linebreak \noindent\hyperlink{discussion}{Discussion}\dotfill \pageref*{discussion} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{$2$-functor} is the [[categorification]] of the notion of a [[functor]] to the setting of [[2-category|2-categories]]. At the 2-categorical level there are several possible versions of this notion one might want depending on the given setting, some of which collapse to the standard definition of a functor between categories when considered on $2$-categories with discrete hom-categories (viewed as $1$-categories). The least restrictive of these is a [[lax functor]], and the strictest is (appropriately) called a [[strict 2-functor]]. For the various separate definitions that do collapse to standard functors, see: \begin{itemize}% \item [[strict 2-functor]] \item [[pseudo functor]] \end{itemize} There is also a notion of `[[lax functor]]', however this notion does not necessarily yield a standard functor when considered on discrete hom-categories. For the generalisation of this to higher categories, see [[semistrict higher category]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Here we present explicitly the definition for the middling notion of a pseudofunctor, and comment on alterations that yield the stronger and weaker notions. \hypertarget{pseudofunctor}{}\paragraph*{{Pseudofunctor}}\label{pseudofunctor} Let $\mathfrak{C}$ and $\mathfrak{D}$ be [[2-categories]]. A pseudofunctor $F:\mathfrak{C}\to\mathfrak{D}$ consists of \begin{itemize}% \item A function $P:Ob_\mathfrak{C}\to Ob_\mathfrak{D}$, and for each pair of objects $A,B\in Ob_\mathfrak{C}$ a functor \end{itemize} $\backslash$begin\{centre\} $P_{A,B}:\mathfrak{C}(A,B)\to\mathfrak{D}(P(A),P(B)).$ $\backslash$end\{centre\} We will generally write the function and functors as $P$. \begin{itemize}% \item For each pair of horizontally composable 1-cells $(f,g)\in Ob_{\mathfrak{C}(B,C)}\times Ob_{\mathfrak{C}(A,B)}$, a $2$-cell isomorphism $\gamma_{f,g}:P(g\circ f)\Rightarrow P(g)\circ P(f)$ called the \emph{associator} as below \end{itemize} $\backslash$begin\{centre\} $\backslash$begin\{xymatrix@C20mm\} P(A) $\backslash$rtwocell{\tt \symbol{94}}\{P(g$\backslash$circ f)\}\_\{P(g)$\backslash$circ P(f)\}\{$\backslash$;$\backslash$;$\backslash$;$\backslash$;$\backslash$gamma\_\{f,g\}\} \& P(C) $\backslash$end\{xymatrix\} $\backslash$end\{centre\} \begin{itemize}% \item For each object object $A\in Ob_\mathfrak{C}$, a $2$-cell isomorphism $\iota_A:P(1_A)\Rightarrow1_{P(A)}$ called the \emph{unitor} as below \end{itemize} $\backslash$begin\{centre\} $\backslash$begin\{xymatrix@C20mm\} P(A) $\backslash$rtwocell{\tt \symbol{94}}\{P(1\_A)\}\_\{1\_\{P(A)\}\}\{$\backslash$;$\backslash$;$\backslash$;$\backslash$;$\backslash$iota\_A\} \& P(A) $\backslash$end\{xymatrix\} $\backslash$end\{centre\} These are subject to the following two axioms: \begin{enumerate}% \item For any composable triplet of $1$-cells $(f,g,h)\in Ob_{\mathfrak{C}(C,D)}\times Ob_{\mathfrak{C}(B,C)}\times Ob_{\mathfrak{C}(A,B)}$ we have that \end{enumerate} $\backslash$begin\{centre\} $\gamma_{f\circ g,h}\circ(\gamma_{f,g}\star 1_{P(h)})=\gamma_{f,g\circ h}\circ(1_{P(f)}\star\gamma_{g,h}),$ $\backslash$end\{centre\} where $\circ$ denotes vertical composition and $\star$ denotes horizontal composition, as illustrated by the following commutative $2$-cell diagram in $\mathfrak{D}(P(A),P(D))$: $\backslash$begin\{centre\} $\backslash$begin\{xymatrix@R20mm@C20mm\} P(f)$\backslash$circ P(g)$\backslash$circ P(h) $\backslash$ar@2\{-{\tt \symbol{62}}\}d\emph{\{$\backslash$gamma}\{f,g\}$\backslash$star 1\_\{P(h)\}\} $\backslash$ar@2\{-{\tt \symbol{62}}\}r{\tt \symbol{94}}\{1\_\{P(f)\}$\backslash$star$\backslash$gamma\_\{g,h\}\} \& P(f)$\backslash$circ P(g$\backslash$circ h)$\backslash$ar@2\{-{\tt \symbol{62}}\}d{\tt \symbol{94}}\{$\backslash$gamma\_\{f,g$\backslash$circ h\}\} $\backslash$ P(f$\backslash$circ g)$\backslash$circ P(h)$\backslash$ar@2\{-{\tt \symbol{62}}\}r\emph{\{$\backslash$gamma}\{f$\backslash$circ g,h\}\} \& P(f$\backslash$circ g$\backslash$circ h) $\backslash$end\{xymatrix\} $\backslash$end\{centre\} \begin{enumerate}% \item For any composable $1$-cells $(f,g)\in Ob_{\mathfrak{C}(B,C)}\times Ob_{\mathfrak{C}(A,B)}$ we have that \end{enumerate} $\backslash$begin\{centre\} $\iota_B\star 1_{P(g)}=\gamma_{1_B,g},$ $\backslash$end\{centre\} $\backslash$begin\{centre\} $1_{P(f)}\star\iota_B=\gamma_{f,1_B},$ $\backslash$end\{centre\} as illustrated by the commutative $2$-cell diagrams below $\backslash$begin\{centre\} $\backslash$begin\{xymatrix@R30mm@C35mm\} P(A)$\backslash$rtwocell{\tt \symbol{94}}\{P(g)\}\_\{P(g)\}\{$\backslash$;$\backslash$;$\backslash$;$\backslash$;$\backslash$;$\backslash$;1\_\{P(g)\}\} $\backslash$drtwocell $\backslash$end\{xymatrix\} ~ ~ ~ ~ ~ ~ $\backslash$begin\{xymatrix@R30mm@C35mm\} P(B) $\backslash$rtwocell{\tt \symbol{94}}\{P(1\_B)\}\_\{1\_\{P(B)\}\}\{$\backslash$;$\backslash$;$\backslash$;$\backslash$;$\backslash$iota\_B\} $\backslash$drtwocell $\backslash$end\{xymatrix\} $\backslash$end\{centre\} \hypertarget{lax_functor}{}\paragraph*{{Lax Functor}}\label{lax_functor} To obtain the notion of a lax functor we only require that the associators $\gamma_{f,g}$ and unitors $\iota_A$ be $2$-cells, not necessarily $2$-cell isomorphisms -- this prevents us from going back and forth between preimages and images of identity $1$-cells and horizontally composed $1$-cells/$2$-cells. \hypertarget{strict_2functor}{}\paragraph*{{Strict 2-Functor}}\label{strict_2functor} To obtain the notion of a strict $2$-functor we require that the associators $\gamma_{f,g}$ and unitors $\iota_A$ be identity arrows, so horizontal composition and $1$-cell identities literally factor through each functor in the same way vertical composition and $2$-cell identities do. \hypertarget{discussion}{}\subsubsection*{{Discussion}}\label{discussion} There is a notion of a `weak 2-category', however it usually doesn't make sense to speak of strict $2$-functors between weak $2$-categories\footnote{Although there are certain contexts in which it does. For instance, there is a [[model structure]] on the category of [[bicategories]] and strict 2-functors between them, which models the homotopy theory of bicategories and weak 2-functors.} , but it does make sense to speak of lax (or `weak') $2$-functors between strict $2$-categories. Indeed, the weak $3$-[[3-category|category]] [[Bicat]] of bicategories, pseudofunctors, [[pseudonatural transformations]], and [[modifications]] is [[equivalence of categories|equivalent]] to its full sub-3-category spanned by the strict 2-categories. However, it is not equivalent to the $3$-category [[Str2Cat]] of strict $2$-categories, \emph{strict} $2$-functors, transformations, and modifications. (For discussion of the terminological choice ``$2$-functor'' and $n$-functor in general, see [[higher functor]].) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[function]] \item [[functor]] \item \textbf{2-functor} / [[pseudofunctor]] / [[(2,1)-functor]] \item [[n-functor]] \item [[(∞,1)-functor]] \item [[(∞,n)-functor]] \end{itemize} [[!redirects 2-functors]] [[!redirects strict 2-functor]] [[!redirects strict 2-functors]] \end{document}