\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-groupoid of Lie 2-algebra valued forms} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_strict_lie_2algebras}{For strict Lie 2-algebras}\dotfill \pageref*{for_strict_lie_2algebras} \linebreak \noindent\hyperlink{ForGeneralLie2Algebras}{For general Lie 2-algebras}\dotfill \pageref*{ForGeneralLie2Algebras} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $\mathfrak{g}$ a [[Lie 2-algebra]] the \textbf{2-groupoid of $\mathfrak{g}$-valued forms} is the [[2-groupoid]] whose objects are [[differential form]]s with values in $\mathfrak{g}$, whose morphisms are [[gauge transformation]]s between these, and whose 2-morphisms are \emph{higher order gauge transformations} of those. This naturally refines to a non-[[concrete sheaf|concrete]] [[Lie 2-groupoid]] is the 2-[[truncated]] [[∞-Lie groupoid]] whose $U$-parameterized smooth families of objects are smooth [[differential form]]s with values in a [[Lie 2-algebra]], and whose morphisms are gauge transformations of these. This is the [[higher category theory|higher category]] generalization of the [[groupoid of Lie-algebra valued forms]]. A [[cocycle]] with coefficients in this 2-groupoid is a [[connection on a 2-bundle]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_strict_lie_2algebras}{}\subsubsection*{{For strict Lie 2-algebras}}\label{for_strict_lie_2algebras} Consider a Lie [[strict 2-group]] $G$ corresponding to a Lie [[crossed module]] $(G_2 \stackrel{\delta}{\to} G_1)$ with action $\alpha : G_1 \to Aut(G_2)$. Write $\mathbf{B}G$ for the corresponding [[delooping]] 2-groupoid, the one coming from the [[crossed complex]] \begin{displaymath} [\mathbf{B}G] = (G_2 \stackrel{\delta}{\to} G_1 \stackrel{\to}{\to} *) \,. \end{displaymath} Write $[\mathfrak{g}_2 \stackrel{\delta_*}{\to} \mathfrak{g}_1]$ for the corresponding [[differential crossed module]] with action $\alpha_* : \mathfrak{g}_1 \to der(\mathfrak{g}_2)$ \begin{udef} The 2-groupoid of Lie 2-algebra valued forms is defined to be the 2-stack \begin{displaymath} \bar \mathbf{B}G : CartSp{}^{op} \to 2Grpd \end{displaymath} which assigns to $U \in CartSp$ the following 2-groupoid: \begin{itemize}% \item An [[object]] is a pair \begin{displaymath} A \in \Omega^1(U,\mathfrak{g}_1)\,, \;\;\; B \in \Omega^2(U,\mathfrak{g}_2) \,. \end{displaymath} \item A 1-[[morphism]] $(g,a) : (A,B) \to (A',B')$ is a pair \begin{displaymath} g \in C^\infty(U,G_1)\,,\;\;\; a \in \Omega^1(U,\mathfrak{g}_2) \end{displaymath} such that \begin{displaymath} A' = Ad_{g^{-1}}\left( A + \delta_* a \right) + g^{-1} d g \end{displaymath} and \begin{displaymath} B' = \alpha_{g^{-1}}( B + d a + [a \wedge a] + \alpha_*(A \wedge a) ) \,. \end{displaymath} The composite of two 1-morphisms \begin{displaymath} (A,B) \stackrel{(g_1,a_1)}{\to} (A',B') \stackrel{(g_2,a_2)}{\to} (A'', B'') \end{displaymath} is given by the pair \begin{displaymath} (g_1 g_2, a_1 + (\alpha_{g_2})_* a_2) \,. \end{displaymath} \item a [[2-morphism]] $f : (g,a) \Rightarrow (g', a'):(A,B)\to (A',B')$ is a function \begin{displaymath} f \in C^\infty(U,G_2) \end{displaymath} such that \begin{displaymath} g' = \delta(f)^{-1} \cdot g \end{displaymath} and \begin{displaymath} a' = Ad_{f^{-1}} \left(a + (r_f^{-1} \circ \alpha_f)_*(A)\right) + f^{-1} d f \end{displaymath} \end{itemize} and composition is defined as follows: vertical composition is given by pointwise multiplication ([[David Roberts|DR]]: the order still needs sorting out!) and horizontal composition is given as horizontal composition in the one-object 2-groupoid $\mathbf{B}G)$. \end{udef} \hypertarget{ForGeneralLie2Algebras}{}\subsubsection*{{For general Lie 2-algebras}}\label{ForGeneralLie2Algebras} We consider now $\mathfrak{g}$ a general [[Lie 2-algebra]]. Let $\mathfrak{g}_0$ and $\mathfrak{g}_1$ be the two vector spaces involved and let \begin{displaymath} \{t^a\} \,, \;\;\; \{b^i\} \end{displaymath} be a dual basis, respectively. The structure of a Lie 2-algebra is conveniently determined by writing out the most general [[Chevalley-Eilenberg algebra]] \begin{displaymath} CE(\mathfrak{g}) \in cdgAlg_\mathbb{R} \end{displaymath} with these generators. We thus have \begin{displaymath} d_{CE(\mathfrak{g})} t^a = - \frac{1}{2}C^a{}_{b c} t^b \wedge t^c - r^a{}_i b^i \end{displaymath} \begin{displaymath} d_{CE(\mathfrak{g})} b^i = -\alpha^i_{a j} t^a \wedge b^j - r_{a b c} t^a \wedge t^b \wedge t^c \,, \end{displaymath} for collections of structure constants $\{C^a{}_{b c}\}$ (the bracket on $\mathfrak{g}_0$) and $\{r^i_a\}$ (the differential $\mathfrak{g}_1 \to \mathfrak{g}_0$) and $\{\alpha^i{}_{a j}\}$ (the [[action]] of $\mathfrak{g}_0$ on $\mathfrak{g}_1$) and $\{r_{a b c}\}$ (the ``Jacobiator'' for the bracket on $\mathfrak{g}_0$). These constants are subject to constraints (the weak [[Jacobi identity]] and its higher [[coherence law]]s) which are precisely equivalent to the condition \begin{displaymath} (d_{CE(\mathfrak{g})})^2 = 0 \,. \end{displaymath} Over a test space $U$ a $\mathfrak{g}$-valued form datum is a morphism \begin{displaymath} \Omega^\bullet(U) \leftarrow W(\mathfrak{g}) : (A,B) \end{displaymath} from the [[Weil algebra]] $W(\mathfrak{g})$. This is given by a 1-form \begin{displaymath} A \in \Omega^1(U, \mathfrak{g}_0) \end{displaymath} and a 2-form \begin{displaymath} B \in \Omega^2(U, \mathfrak{g}_1) \,. \end{displaymath} The [[curvature]] of this is $(\beta, H)$, where the 2-form component (``fake curvature'') is \begin{displaymath} \beta^a = d_{dR} A^a + \frac{1}{2}C^a{}_{b c} A^b \wedge A^c + r^a{}_i B^i \end{displaymath} and whose 3-form component is \begin{displaymath} H^i = d_{dR} B^i + \alpha^i{}_{a j} A^a \wedge B^j + t_{a b c} A^a \wedge A^b \wedge A^c \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{udef} \textbf{(flat Lie 2-algebra valued forms)} The full sub-2-groupoid on \emph{flat} Lie 2-algebra valued forms, i.e. those pairs $(A,B)$ for which the 2-form [[curvature]] \begin{displaymath} \delta_* B - d A + [A \wedge A] = 0 \end{displaymath} and the 3-form [[curvature]] \begin{displaymath} d B + [A \wedge B] = 0 \end{displaymath} vanishes is a resolution of the underlying discrete Lie 2-groupoid $\mathbf{\flat} \mathbf{B}G$ of the Lie 2-groupoid $\mathbf{B}G$. \end{udef} This is discussed at [[∞-Lie groupoid]] in the section . \begin{udef} Let $\mathbf{\Pi}_2 : CartSp \to 2LieGrpd$ be the smooth 2-[[fundamental groupoid]] functor and let $P_2 : CartSp \to 2LieGrpd$ be the [[path n-groupoid|path 2-groupoid]] functor, taking values in the 2-catgeory $2Grpd(Difeol)$ of 2-groupoids [[internal category|internalization]] to [[diffeological space]]s. Then \begin{itemize}% \item the 2-groupoid of Lie 2-algebra valued forms for which both 2- and 3-form curvature vanish is canonically equivalent to \begin{displaymath} Hom_{2Grpd(Diffeol)}(\Pi_2(-), \mathbf{B}G) : CartSp^{op} \to 2Grpd \,; \end{displaymath} \item the 2-groupoid of Lie 2-algebra valued forms for which the 2-form curvature vanishes is canonically equivalent to \begin{displaymath} Hom_{2Grpd(Diffeol)}(P_2(-), \mathbf{B}G) : CartSp^{op} \to 2Grpd \,; \end{displaymath} \end{itemize} \end{udef} The equivalence is given by 2-dimensional [[parallel transport]]. A proof is in \href{http://arxiv.org/abs/0802.0663}{SchrWalII}. The following proposition asserts that the Lie 2-groupoid of Lie 2-algebra valued forms is the coefficient object for for \emph{differential nonabelian cohomology} in degree 2, namely for \emph{connections} on [[principal 2-bundle]]s and in particular on [[gerbe]]s. \begin{udef} \textbf{(2-bundles with connection)} For $X$ a [[paracompact space|paracompact]] [[smooth manifold]] and $\{U_i \to X\}$ a [[good open cover]] the 2-groupoid, let $X \stackrel{\simeq}{\leftarrow} C(\{U_i\})$ be the corresponding [[Cech nerve]] smooth 2-groupoid. Then \begin{displaymath} Hom_{2Grpd(Diffeol)}( C(\{U_i\}), \bar \mathbf{B}G) \end{displaymath} is equivalent to the [[2-groupoid]] of $G$-[[principal 2-bundle]]s with [[connection on a 2-bundle|2-connection]]. \end{udef} This is discussed and proven in \href{http://arxiv.org/abs/0802.0663}{SchrWalII} for the case where the 2-form curvature is restricted to vanish. In this case the above can be written as \begin{displaymath} Hom( C(\{U_i\}), Hom(P_2(-), \mathbf{B}G)) \simeq Hom(P_2(C(\{\U_i\})), \mathbf{B}G) \,, \end{displaymath} where $P_2(C(\{\U_i\}) \in 2LieGrpd$ is a resolution of the [[path 2-groupoid]] of $X$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[groupoid of Lie-algebra valued forms]] \item \textbf{2-groupoid of Lie 2-algebra valued forms} \begin{itemize}% \item [[nonabelian Stokes theorem]] \end{itemize} \item [[3-groupoid of Lie 3-algebra valued forms]] \item [[∞-groupoid of ∞-Lie-algebra valued forms]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The 2-groupoid of Lie 2-algebra valued forms described in \href{http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.0663v3.pdf#page=27}{definition 2.11} of \begin{itemize}% \item Schreiber, Waldorf, \emph{Smooth functors versus differential forms} (). \end{itemize} There are many possible conventions. The one reproduced above is supposed to describe the \emph{bidual} [[opposite 2-category]] of the 2-groupoid as defined in that article, with the direction of 1- and 2-morphisms reversed. See also . [[!redirects Lie 2-algebra valued 2-form]] [[!redirects Lie 2-algebra valued forms]] [[!redirects Lie 2-algebra valued differential forms]] [[!redirects Lie 2-algebra valued form]] \end{document}