\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-limit} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits}{}\paragraph*{{$\infty$-Limits}}\label{limits} [[!include infinity-limits - contents]] \vspace{.5em} \hrule \vspace{.5em} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Terminology}{Strictness and terminology}\dotfill \pageref*{Terminology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{2limits_over_diagrams_of_special_shape}{2-limits over diagrams of special shape}\dotfill \pageref*{2limits_over_diagrams_of_special_shape} \linebreak \noindent\hyperlink{finite_2limits}{Finite 2-Limits}\dotfill \pageref*{finite_2limits} \linebreak \noindent\hyperlink{(2,1)limit}{$(2,1)$-limits}\dotfill \pageref*{(2,1)limit} \linebreak \noindent\hyperlink{lax}{Lax limits}\dotfill \pageref*{lax} \linebreak \noindent\hyperlink{2ColimitsInCat}{2-Colimits in $Cat$}\dotfill \pageref*{2ColimitsInCat} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{2-limit} is the type of [[limit]] that is appropriate in a (weak) [[2-category]]. (Since general 2-categories are often called \emph{[[bicategories]]}, 2-limits are often called \emph{[[bilimits]]}.) There are three notable changes when passing from ordinary 1-limits to 2-limits: \begin{enumerate}% \item In order to satisfy the [[principle of equivalence]], the ``cones'' in a 2-limit are required to commute only up to [[2-morphism|2-isomorphism]]. \item The [[universal property]] of the limit is expressed by an [[equivalence of categories]] rather than a [[bijection]] of [[sets]]. This means that \begin{enumerate}% \item every other cone over the diagram that commutes up to isomorphism factors through the limit, up to isomorphism, and \item every transformation \emph{between} cones also factors through a 2-cell in the limit. We will give some examples below. \end{enumerate} \item Since 2-categories are [[enriched category|enriched]] over [[Cat]] (this is precise in the [[strict 2-category|strict]] case, and [[bicategory|weakly]] true otherwise), $Cat$-[[weighted limit]]s become important. This means that both the diagrams we take limits of and the shape of ``cones'' that limits represent can involve $2$-cells as well as $1$-cells. \end{enumerate} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $K$ and $D$ be [[2-categories]], and $J\colon D\to Cat$ and $F\colon D\to K$ be [[2-functors]]. A \textbf{$J$-weighted (2-)limit of $F$} is an object $L\in K$ equipped with a [[pseudonatural equivalence]] \begin{displaymath} K(X,L) \simeq [D,Cat](J,K(X,F-)). \end{displaymath} where $[D,Cat]$ denotes the 2-category of [[2-functors]] $D\to Cat$, [[pseudonatural transformations]] between them, and [[modifications]] between those. A 2-limit in the [[opposite 2-category]] $K^{op}$ is called a \textbf{2-colimit} in $K$. Everything below applies dually to 2-colimits, the higher analogues of [[colimits]]. (But somebody might want to make a separate page that gives appropriate examples of these.) \hypertarget{Terminology}{}\subsubsection*{{Strictness and terminology}}\label{Terminology} If $K$ and $D$ are [[strict 2-categories]], $J$ and $F$ are [[strict 2-functors]], and if we replace this pseudonatural equivalence by a (strictly 2-natural) isomorphism \emph{and} the 2-category $[D,Cat]$ by the 2-category $[D,Cat]_{strict}$ of strict 2-functors and strict 2-natural transformations, then we obtain the definition of a \textbf{[[strict 2-limit]]}. This is precisely a Cat-weighted limit in the sense of ordinary [[enriched category]] theory. See [[strict 2-limit]] for details. On the other hand, if $K$, $D$, $J$, and $F$ are strict as above, and we replace the equivalence by an isomorphism but keep the weak meaning of $[D,Cat]$, then we obtain the notion of a \textbf{strict pseudolimit}. Strict pseudolimits are, in particular, 2-limits, whereas strict 2-limits are not always (although some, such as [[PIE-limits]] and [[flexible limits]], are). In a strict 2-category, these types of strict limits are often technically useful in constructing the ``up-to-isomorphism'' 2-limits we consider here. When we know we are working in a (weak) 2-category, the only type of limit that makes sense is a (non-strict) 2-limit. Therefore, we usually call these simply ``limits.'' To emphasize the distinction with the strict 2-limits in a strict 2-category, the ``up-to-isomorphism'' 2-limits were historically often called \emph{bilimits} (by analogy with [[bicategory]] for ``weak 2-category''). However, this terminology is somewhat unfortunate, not only because it doesn't generalize well to $n$, but because it leads to words like ``biproduct,'' which also has the [[biproduct|completely unrelated meaning]] of an object that is both a product and a coproduct (which is common in [[additive category|additive categories]]). Unfortunately, we probably shouldn't use ``weak limit'' to emphasize the ``up-to-isomorphism'' nature of these limits, because that also has the [[weak limit|completely unrelated meaning]] of an object in a 1-category satisfying the existence, but not the uniqueness property of an ordinary limit. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{2limits_over_diagrams_of_special_shape}{}\subsubsection*{{2-limits over diagrams of special shape}}\label{2limits_over_diagrams_of_special_shape} Any ordinary type of limit can be ``2-ified'' by boosting its ordinary universal property up to a 2-categorical one. In the following examples we work in a 2-category $K$. \begin{itemize}% \item A \textbf{[[terminal object]]} in $K$ is an object 1 such that $K(X,1)$ is equivalent to the [[terminal category]] for any object $X$. This means that for any $X$ there is a morphism $X\to 1$ and for any two morphisms $f,g:X\to 1$ there is a unique morphism $f\to g$, and this morphism is an isomorphism. \item A \textbf{[[product]]} of two objects $A,B$ in $K$ is an object $A\times B$ together with a natural equivalence of categories $K(X,A\times B) \simeq K(X,A)\times K(X,B)$. This means that we have projections $p:A\times B\to A$ and $q:A\times B\to B$ such that (1) for any $f:X\to A$ and $g:X\to B$, there exists an $h:X\to A\times B$ and isomorphisms $p h\cong f$ and $q h\cong g$, and (2) for any $h,k:X\to A\times B$ and 2-cells $\alpha:p h \to p k$ and $\beta: q h \to q k$, there exists a unique $\gamma:h \to k$ such that $p \gamma = \alpha$ and $q \gamma = \beta$. \item A \textbf{[[pullback]]} of a [[co-span]] $A \overset{f}{\to} C \overset{g}{\leftarrow} B$ consists of an object $A\times_C B$ and projections $p:A\times_C B\to A$ and $q:A\times_C B\to B$ together with an isomorphism $\phi:f p \cong g q$, such that (1) for any $m:X\to A$ and $n:X\to B$ with an isomorphism $\psi:f m \cong g n$, there exists an $h:X\to A\times_C B$ and isomorphisms $\alpha:p h \cong m$ and $\beta:q h \cong n$ such that $g\beta . \phi h . f \alpha^{-1} = \psi$, and (2) given any two morphisms $h,k:X\to A\times_C B$ and 2-cells $\mu:p h \to p k$ and $\nu:q h \to q k$ such that $f \mu = g \nu$ (modulo the given isomorphism $f p \cong g q$), i.e., $\phi k . f\mu = g\nu . \phi h$, there exists a unique 2-cell $\gamma:h\to k$ such that $p \gamma = \mu$ and $q \gamma = \nu$. This is sometimes called the \emph{pseudo-pullback} but that term more properly refers to a particular [[strict 2-limit]]. \item An \textbf{[[equalizer]]} of $f,g:A\to B$ consists of an object $E$ and a morphism $e:E\to A$ together with an isomorphism $f e \cong g e$, which is universal in a sense the reader should now be able to write down. This is sometimes called the \emph{pseudo-equalizer} but that term more properly refers to a particular [[strict 2-limit]]. Note that frequently, such as in the construction of all limits from basic ones, equalizers need to be replaced by [[descent object]]s. \end{itemize} There are also various important types of 2-limits that involve 2-cells in the diagram shape or in the weight, and hence are not just ``boosted-up'' versions of 1-limits. \begin{itemize}% \item The \textbf{[[comma object]]} of a cospan $A \overset{f}{\to} C \overset{g}{\leftarrow} B$ is a universal object $(f/g)$ and projections $p:(f/g)\to A$ and $q:(f/g)\to B$ together with a transformation (not an isomorphism) $f p \to g q$. In [[Cat]], [[comma objects]] are [[comma category|comma categories]]. Comma objects are sometimes called \emph{lax pullbacks} but that term more properly refers to the lax version of a pullback; see ``lax limits'' below. \item The \textbf{[[inserter]]} of a pair of parallel arrows $f,g:A \;\rightrightarrows\; B$ is a universal object $I$ equipped with a map $i:I\to A$ and a 2-cell $f i \to g i$. \item The \textbf{[[equifier]]} of a pair of parallel 2-cells $\alpha,\beta: f\to g: A\to B$ is a universal object $E$ equipped with a map $e:E\to A$ such that $\alpha e = \beta e$. \item The \textbf{[[inverter]]} of a 2-cell $\alpha:f\to g:A\to B$ is a universal object $V$ with a map $v:V\to A$ such that $\alpha v$ is invertible. \item The \textbf{[[power]]} of an object $A$ by a category $C$ is a universal object $A^C$ equipped with a functor $C\to K(A^C,A)$. Of particular importance is the case when $C$ is the [[walking arrow]] $\mathbf{2}$. \end{itemize} \hypertarget{finite_2limits}{}\subsubsection*{{Finite 2-Limits}}\label{finite_2limits} A 2-limit is called \textbf{finite} if its diagram shape and its weight are both ``finitely presentable'' in a suitable sense (defined in terms of [[computads]]; see \hyperlink{StreetLimitsIndexed}{Street's article} \emph{Limits indexed by category-valued 2-functors} ). Pullbacks, comma objects, inserters, equifiers, and so on are all finite limits, as are powers by any finitely presented category. All finite limits can be constructed from pullbacks, a terminal object, and powers with $\mathbf{2}$. \hypertarget{(2,1)limit}{}\subsubsection*{{$(2,1)$-limits}}\label{(2,1)limit} If the ambient [[2-category]] is in fact a [[(2,1)-category]] in that all [[2-morphism]]s are invertible then there is a rich set of tools available for handling the 2-limits in this context. We may say \textbf{$(2,1)$-limits} and \textbf{$(2,1)$-colimits} in this case. These are then a special case of the more general [[(∞,1)-limit]]s and [[(∞,1)-colimit]]s in a [[(∞,1)-category]]. A [[(2,1)-category]] is a special case of an [[(∞,1)-category]]. Traditionally, [[(∞,1)-limit]]s are best known in terms of the presentation of $(\infty,1)$-catgeories by [[categories with weak equivalences]] in general and [[model categories]] in particular. (2,1)-limits can often also be viewed in this way. The corresponding presentation of the $(\infty,1)$-limits / $(2,1)$-limits is called \textbf{[[homotopy limit]]s} and \textbf{[[homotopy colimit]]s}. For instance 2-limits in the [[(2,1)-category]] [[Grpd]] of [[groupoid]]s, [[functor]]s and (necessarily) [[natural isomorphism]]s. Are equivalently computed as [[homotopy limit]]s in the [[model structure on simplicial sets]] $sSet_{Quillen}$ of diagrams of [[1-truncated]] [[Kan complex]]es. (The equivalence of homotopy limits with $(\infty,1)$-limits is discussed at [[(∞,1)-limit]]). Or for instance, more generally, the 2-limits in any [[(2,1)-sheaf]](=[[stack]]) [[(2,1)-topos]] may be computed as [[homotopy limit]]s in a [[model structure on simplicial presheaves]] over the given [[(2,1)-site]] of diagrams of [[1-truncated]] [[simplicial presheaves]]. This includes as examples [[big topos|big (2,1)-toposes]] such as those over the large sites [[Top]] or [[SmoothMfd]] where computations with [[topological groupoid]]s/[[topological stack]]s, [[Lie groupoid]]s/[[differentiable stack]]s etc. take place. \hypertarget{lax}{}\subsubsection*{{Lax limits}}\label{lax} A \textbf{lax limit} can be defined like a 2-limit, except that the triangles in the definition of a cone are required only to commute up to a specified \emph{transformation}, not necessarily an isomorphism. In other words, in place of the 2-category $[D,Cat]$ we use the 2-category $[D,Cat]_l$ whose morphisms are [[lax natural transformations]]; thus the lax limit $L$ of a diagram $F$ weighted by $J$ is equipped with a universal lax natural transformation $J\to K(L,F-)$. This may look like a different concept, but in fact, for any weight $J$ there is another weight $Q_l(J)$ such that lax $J$-weighted limits are the same as $Q_l(J)$-weighted 2-limits. Here $Q_l$ is the [[lax morphism classifier]] for 2-functors. Therefore, lax limits are really a special case of 2-limits. Similarly, \textbf{oplax limits}, in which we use oplax natural transformations, are also a special case of 2-limits. There is a further simplification of lax limits in the case of ``conical'' lax limits where the weight $J=\Delta 1$ is constant at the [[terminal category]]. In this case, it is easy to check that a lax natural transformation $\Delta 1 \to K(X,F-)$ is the same as a lax natural transformation $\Delta X \to F$. Thus, a conical lax limit of $F$ is a representing object for such lax transformations. Here are some examples. \begin{itemize}% \item Lax terminal objects and lax products are the same as ordinary ones, since there are no commutativity conditions on the cones. \item The \textbf{lax limit of an arrow} $f:A\to B$ is a universal object $L$ equipped with projections $p:L\to A$ and $q:L\to B$ and a 2-cell $f p \to q$. Note that this is equivalent to a comma object $(f/1_B)$. \item The \textbf{lax pullback} of a cospan $A \overset{f}{\to} C \overset{g}{\leftarrow} B$ is a universal object $P$ equipped with projections $p:P\to A$, $q:P\to B$, $r:P\to C$, and 2-cells $f p \to r$ and $g q \to r$. \end{itemize} Note that lax pullbacks are \emph{not} the same as [[comma objects]]. In general comma objects are much more useful, but there are 2-categories that admit all lax limits but do not admit comma objects, so using ``lax pullback'' to mean ``comma object'' can be misleading. A \textbf{lax colimit} in $K$ is, of course, a lax limit in $K^{op}$. Thus, it is a representing object for lax natural transformations $J \to K(F-,L)$. There is a subtlety here, however, because in the case $J=\Delta 1$, a lax natural transformation $\Delta 1 \to K(F-,L)$ is the same as an \emph{oplax} natural transformation $F \to \Delta L$. Thus, it is easy to mistakenly say ``lax colimit'' when one really means ``oplax colimit'' and vice versa. \begin{uremark} With this in mind, one might be tempted to switch the meanings of ``lax colimit'' and ``oplax colimit'', but there is a good reason not to. Recall that a lax $J$-weighted limit is the same as an ordinary $Q_l(J)$-weighted limit. Standard terminology in enriched category theory is that a $W$-weighted colimit in an enriched category $K$ is the same as a $W$-weighted limit in $K^{op}$, and indeed in that generality there is no other option. Thus, a lax $J$-weighted colimit in $K$ should be an ordinary $Q_l(J)$-weighted colimit in $K$, hence a $Q_l(J)$-weighted limit in $K^{op}$, and thus a lax $J$-weighted limit in $K^{op}$. \end{uremark} Here are some examples of lax and oplax colimits: \begin{itemize}% \item A [[Kleisli object]] is a lax colimit of a [[monad]], regarded as a diagram in a 2-category. \item The [[collage]] of a [[profunctor]] is its lax colimit, regarded as a diagram in the 2-category [[Prof]]. \item When $C$ is a category, the [[Grothendieck construction]] of a functor $C\to Cat$ is the same as its \emph{oplax} colimit; see \href{http://ncatlab.org/nlab/show/Grothendieck+construction#AsALaxColimit}{here}. \end{itemize} \hypertarget{2ColimitsInCat}{}\subsubsection*{{2-Colimits in $Cat$}}\label{2ColimitsInCat} As shown \href{http://ncatlab.org/nlab/show/Grothendieck+construction#AsALaxColimit}{here}, if $C$ is an ordinary category and $F \colon C \to Cat$ is a [[pseudofunctor]], then the [[oplax colimit]] of $F$ is given by the [[Grothendieck construction]] $\int F$ --- and its [[pseudo-colimit]] is given by [[localization|formally inverting]] the [[cartesian morphism|opcartesian]] morphisms in $\int F$. This yields a construction of certain pseudo 2-colimits in $Cat$. Moreover, a similar result holds more generally when $C$ is a [[bicategory]]. In this case, $\int F$ is also a bicategory: a 2-cell from $(m \colon c \to d, f \colon m_*x \to y)$ to $(n \colon c \to d, g \colon n_*x \to y)$ is given by a 2-cell $\mu \colon m \Rightarrow n$ in $C$ such that $\mu_* x$ is a morphism $f \to g$ over $y$. Let $\pi_*$ denote the functor that sends a bicategory $K$ to the category whose objects are those of $K$ and whose hom-sets are the [[connected category|connected components]] of the hom-categories of $K$; let also $d_*$ denote the functor that sends a category $X$ to the corresponding locally discrete bicategory. Then there is an equivalence of categories \begin{displaymath} [K, d_* X] \simeq [\pi_* K, X] \end{displaymath} It is straightforward to check that the first of the above facts extends to the bicategorical case: \begin{displaymath} Lax(F, \Delta X) \simeq [{\textstyle \int} F, d_* X] \end{displaymath} as does the fact that a lax transformation on the left is pseudo if and only if the corresponding functor on the right inverts the opcartesian morphisms in $\int F$. It is almost trivial that the adjunction $\pi_* \dashv d_*$ holds when restricted to the functor $[-, -]_{S^{-1}}$ that takes two categories or bicategories to the full subcategory of functors that invert the class $S$ of morphisms. Taking $S$ to be the opcartesian morphisms in $\int F$, then, we have \begin{displaymath} Ps(F, \Delta X) \simeq [{\textstyle \int} F, d_* X]_{S^{-1}} \simeq [\pi_* {\textstyle \int} F, X]_{S^{-1}} \simeq [(\pi_* {\textstyle \int} F)[S^{-1}], X] \end{displaymath} Hence the pseudo colimit of $F$ is got by taking its bicategory of elements, applying the `local $\pi_0$' functor, and then inverting the (images of the) opcartesian morphisms as usual. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[limit]] \item \textbf{2-limit} \item [[(∞,1)-limit]] \begin{itemize}% \item [[homotopy limit]] \item [[lax (∞,1)-colimit]] \end{itemize} \item [[coherence for bicategories with finite limits]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ross Street]], \emph{Limits indexed by category-valued 2-functors} Journal of Pure and Applied Algebra \textbf{8}, Issue 2 (1976) pp 149-181. doi:\href{https://doi.org/10.1016/0022-4049(76%2990013-X}{10.1016/0022-4049(76)90013-X} \item [[Max Kelly]], \emph{Elementary observations on 2-categorical limits}, Bulletin of the Australian Mathematical Society (1989), 39: 301-317, doi:\href{https://doi.org/10.1017/S0004972700002781}{10.1017/S0004972700002781} \item [[Ross Street]], \emph{Fibrations in Bicategories}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, Volume \textbf{21} (1980) no. 2, pp 111-160. \href{http://www.numdam.org/item?id=CTGDC_1980__21_2_111_0}{Numdam} and correction, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, Volume \textbf{28} (1987) no. 1, pp 53-56 \href{http://www.numdam.org/item?id=CTGDC_1987__28_1_53_0}{Numdam} \end{itemize} Section 6, page 37 in \begin{itemize}% \item [[Steve Lack]], \emph{A 2-categories companion}. In: Baez J., May J. (eds) Towards Higher Categories. The IMA Volumes in Mathematics and its Applications, vol \textbf{152} 2010 Springer, New York, NY. doi:\href{https://doi.org/10.1007/978-1-4419-1524-5_4}{10.1007/978-1-4419-1524-5\_4}, arXiv:\href{http://arxiv.org/abs/math.CT/0702535}{math.CT/0702535}. \item G. J. Bird, [[Max Kelly]], [[John Power]], [[Ross Street]], \emph{Flexible limits for 2-categories}, Journal of Pure and Applied Algebra \textbf{61} Issue 1 (1989) pp 1-27. doi:\href{http://dx.doi.org/10.1016/0022-4049(89%2990065-0}{10.1016/0022-4049(89)90065-0} Chapters 3,4,5 in \item [[Thomas Fiore]], \emph{Pseudo Limits, Biadjoints, and Pseudo Algebras: Categorical Foundations of Conformal Field Theory}, Mem. Amer. Math. Soc. \textbf{182} (2006), no. 860 (\href{http://arxiv.org/abs/math/0408298}{arXiv:math/0408298}) (\href{http://bookstore.ams.org/memo-182-860}{AMS page}, \href{https://books.google.com.au/books?id=y_DUCQAAQBAJ}{Google Books}) \end{itemize} [[!redirects 2-limits]] [[!redirects 2-colimit]] [[!redirects 2-colimits]] [[!redirects 2-categorical limit]] [[!redirects 2-categorical limits]] [[!redirects 2-categorial limit]] [[!redirects 2-categorial limits]] [[!redirects 2-categorical colimit]] [[!redirects 2-categorical colimits]] [[!redirects 2-categorial colimit]] [[!redirects 2-categorial colimits]] [[!redirects bicolimit]] [[!redirects bicolimits]] [[!redirects lax limit]] [[!redirects lax limits]] [[!redirects lax colimit]] [[!redirects lax colimits]] [[!redirects oplax limit]] [[!redirects oplax limits]] [[!redirects oplax colimit]] [[!redirects oplax colimits]] [[!redirects colax limit]] [[!redirects colax limits]] [[!redirects colax colimit]] [[!redirects colax colimits]] [[!redirects strict lax limit]] [[!redirects strict lax limits]] [[!redirects strict lax colimit]] [[!redirects strict lax colimits]] [[!redirects strict oplax limit]] [[!redirects strict oplax limits]] [[!redirects strict oplax colimit]] [[!redirects strict oplax colimits]] [[!redirects strict colax limit]] [[!redirects strict colax limits]] [[!redirects strict colax colimit]] [[!redirects strict colax colimits]] [[!redirects pseudolimit]] [[!redirects pseudolimits]] [[!redirects pseudo limit]] [[!redirects pseudo limits]] [[!redirects pseudo-limit]] [[!redirects pseudo-limits]] [[!redirects pseudocolimit]] [[!redirects pseudocolimits]] [[!redirects pseudo colimit]] [[!redirects pseudo colimits]] [[!redirects pseudo-colimit]] [[!redirects pseudo-colimits]] [[!redirects strict pseudolimit]] [[!redirects strict pseudolimits]] [[!redirects strict pseudo limit]] [[!redirects strict pseudo limits]] [[!redirects strict pseudo-limit]] [[!redirects strict pseudo-limits]] [[!redirects strict pseudocolimit]] [[!redirects strict pseudocolimits]] [[!redirects strict pseudo colimit]] [[!redirects strict pseudo colimits]] [[!redirects strict pseudo-colimit]] [[!redirects strict pseudo-colimits]] [[!redirects (2,1)-limit]] [[!redirects (2,1)-limits]] [[!redirects (2,1)-colimit]] [[!redirects (2,1)-colimits]] \end{document}