\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-pullback} \hypertarget{pullbacks}{}\section*{{$2$-pullbacks}}\label{pullbacks} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{equivalence_of_definitions}{Equivalence of definitions}\dotfill \pageref*{equivalence_of_definitions} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{strict_2pullbacks}{Strict 2-pullbacks}\dotfill \pageref*{strict_2pullbacks} \linebreak \noindent\hyperlink{strict_weighted_limits}{Strict weighted limits}\dotfill \pageref*{strict_weighted_limits} \linebreak \noindent\hyperlink{lax_versions}{Lax versions}\dotfill \pageref*{lax_versions} \linebreak An ordinary [[pullback]] is a [[limit]] over a [[diagram]] of the form $A \to C \leftarrow B$. Accordingly, a \textbf{2-pullback} (or \textbf{2-fiber product}) is a [[2-limit]] over such a diagram. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Saying that ``a 2-pullback is a 2-limit over a [[cospan]]'' is in fact a sufficient definition, but we can simplify it and make it more explicit. A \textbf{$2$-pullback} in a [[2-category]] is a square \begin{displaymath} \itexarray{P & \overset{p}{\to} &A \\ ^q\downarrow & \cong & \downarrow^f\\ B& \underset{g}{\to} &C } \end{displaymath} which commutes up to [[isomorphism]], and which is universal among such squares in a 2-categorical sense. This means that (1) given any other such square \begin{displaymath} \itexarray{Z & \overset{v}{\to} &A \\ ^w\downarrow & \cong & \downarrow^f\\ B& \underset{g}{\to} &C } \end{displaymath} which commutes up to isomorphism, there exists a morphism $u:Z\to P$ and isomorphisms $p u \cong v$ and $q u \cong w$ which are coherent with the given ones above, and (2) given any two morphisms $u,t:Z\to P$ and 2-cells $\alpha:p u \to p t$ and $\beta:q u \to q t$ such that $f \alpha = g \beta$ (modulo the given isomorphism $f p \cong g q$), there exists a unique 2-cell $\gamma:u\to t$ such that $p \gamma = \alpha$ and $q \gamma = \beta$. \hypertarget{equivalence_of_definitions}{}\subsection*{{Equivalence of definitions}}\label{equivalence_of_definitions} The simplification in the above explicit definition has to do with the omission of an unnecessary structure map. Note that an ordinary pullback of $A \overset{f}{\to} C \overset{g}{\leftarrow} B$ comes equipped with maps $P\overset{p}{\to} A$, $P\overset{q}{\to} B$, and $P\overset{r}{\to} C$, but since $r = f p$ and $r = g q$, the map $r$ is superfluous data and is usually omitted. In the 2-categorical case, where identities are replaced by isomorphisms, it is, strictly speaking, different to give merely $p$ and $q$ with an isomorphism $f p \cong g q$, than to give $p$, $q$, and $r$ with isomorphisms $r \cong f p$ and $r \cong g q$. However, when 2-limits are considered as only defined up to equivalence (as is the default on the nLab), the two resulting notions of ``2-pullback'' are the same. In much of the 2-categorical literature, the version with $r$ specified would be called a \textbf{bipullback} and the version with $r$ not specified would be called a \textbf{bi-iso-comma-object}. The unsimplified definition would be: a \textbf{$2$-pullback} in a [[2-category]] is a diagram \begin{displaymath} \itexarray{P & \overset{p}{\to} &A \\ ^q\downarrow & \searrow & \downarrow^f\\ B& \underset{g}{\to} &C } \end{displaymath} in which each triangle commutes up to [[isomorphism]], and which is universal among such squares in a 2-categorical sense. This means that (1) given any other such square \begin{displaymath} \itexarray{Z & \overset{r}{\to} &A \\ ^s\downarrow & \searrow & \downarrow^f\\ B& \underset{g}{\to} &C } \end{displaymath} \begin{displaymath} \itexarray{Z & \overset{v}{\to} &A \\ ^w\downarrow & \cong & \downarrow^f\\ B& \underset{g}{\to} &C } \end{displaymath} in which the triangles commute up to isomorphism, there exists a morphism $u\colon Z \to P$ and isomorphisms $p u \cong v$ and $q u \cong w$ which are coherent with the given ones above, and (2) given any two morphisms $u,t\colon Z \to P$ and 2-cells $\alpha\colon p u \to p t$ and $\beta\colon q u \to q t$ such that $f \alpha = g \beta$ (modulo the given isomorphism $f p \cong g q$), there exists a unique 2-cell $\gamma\colon u \to t$ such that $p \gamma = \alpha$ and $q \gamma = \beta$. Stephan: I would not write $f\alpha =g \beta$ since 1-cells are not composable with 2-cells. \emph{Toby}: They are, through the operation of [[whiskering]]. Stephan: Thank you Toby. I inserted this example in [[horizontal composition]] To see that these definitions are equivalent, we observe that both assert the [[representable functor|representability]] of some [[2-functor]] (where ``representability'' is understood in the 2-categorical ``up-to-equivalence'' sense), and that the corresponding 2-functors are equivalent. \begin{itemize}% \item In the simplified case, the functor $F_1\colon K^{op}\to Cat$ sends an object $Z$ to the category whose\begin{itemize}% \item objects are squares commuting up to isomorphism, i.e. maps $v\colon Z\to A$ and $w\colon Z\to B$ equipped with an isomorphism $\mu\colon f v \cong g w$, and whose \item morphisms from $(v,w,\mu)$ to $(v',w',\mu')$ are pairs $\phi\colon v\to v'$ and $\psi\colon w\to w'$ such that $\mu' . (f \phi) = (g \psi) . \mu$. \end{itemize} \item In the unsimplified case, the functor $F_2\colon K^{op}\to Cat$ sends an object $Z$ to the category whose\begin{itemize}% \item objects consist of maps $v\colon Z\to A$, $w\colon Z\to B$, and $x\colon Z\to C$ equipped with isomorphisms $\kappa\colon f v \cong x$ and $\lambda\colon x\cong g w$, and whose \item morphisms from $(v,w,x,\kappa,\lambda)$ to $(v',w',x',\kappa',\lambda')$ are triples $\phi\colon v\to v'$, $\psi\colon w\to w'$, and $\chi\colon x\to x'$ such that $\kappa' . (f \phi) = \chi . \kappa$ and $\lambda' . \chi = (g \psi) . \lambda$. \end{itemize} \end{itemize} We have a canonical [[pseudonatural transformation]] $F_2\to F_1$ that forgets $x$ and sets $\mu = \lambda . \kappa$. This is easily seen to be an [[equivalence]], so that any representing object for $F_1$ is also a representing object for $F_2$ and conversely. (Note, though, that in order to define an inverse equivalence $F_1\to F_2$ we must choose whether to define $x = f v$ or $x = g w$.) \hypertarget{variations}{}\subsection*{{Variations}}\label{variations} 2-pullbacks can also be identified with [[homotopy pullbacks]], when the latter are interpreted in $Cat$-enriched homotopy theory. \hypertarget{strict_2pullbacks}{}\subsubsection*{{Strict 2-pullbacks}}\label{strict_2pullbacks} If we are in a [[strict 2-category]] and all the coherence isomorphisms ($\mu$, $\kappa$, $\lambda$, etc.) are required to be identities, and $u$ in property (1) is required to be unique, then we obtain the notion of a \textbf{strict 2-pullback}. This is an example of a [[strict 2-limit]]. Note that since we must have $x = f v = g w$, the two definitions above are still the same. In fact, they are now even isomorphic (and determined up to isomorphism, rather than equivalence). In literature where ``2-limit'' means ``strict 2-limit,'' of course ``2-pullback'' means ``strict 2-pullback.'' Obviously not every 2-pullback is a strict 2-pullback, but also not every strict 2-pullback is a 2-pullback, although the latter is true if either $f$ or $g$ is an [[isofibration]] (and in particular if either is a [[Grothendieck fibration]]). A strict 2-pullback is, in particular, an ordinary pullback in the underlying 1-category of our strict 2-category, but it has a stronger universal property than this, referring to 2-cells as well (namely, part (2) of the explicit definition). \hypertarget{strict_weighted_limits}{}\subsubsection*{{Strict weighted limits}}\label{strict_weighted_limits} If the coherence isomorphisms $\mu$, $\kappa$, $\lambda$ in the squares are retained, but in (1) the isomorphisms $p u \cong r$ and $q u \cong s$ are required to be identities and $u$ is required to be unique, then the simplified definition becomes that of a \textbf{strict iso-comma object}, while the unsimplified definition becomes that of a \textbf{strict pseudo-pullback}. (Iso-comma objects are so named because if the isomorphisms in the squares are then replaced by mere morphisms, we obtain the notion of (strict) [[comma object]]). Every strict iso-comma object, and every strict pseudo-pullback, is also a (non-strict) 2-pullback. In particular, if strict iso-comma objects and strict pseudo-pullbacks both exist, they are equivalent, but they are \emph{not} isomorphic. (Note that their strict universal property determines them up to isomorphism, not just equivalence.) In many strict 2-categories, such as [[Cat]], 2-pullbacks can naturally be constructed as either strict iso-comma objects or strict pseudo-pullbacks. \hypertarget{lax_versions}{}\subsubsection*{{Lax versions}}\label{lax_versions} Replacing the isomorphism $\mu$ in the simplified definition by a mere transformation results in a [[comma object]], while replacing $\kappa$ and $\lambda$ in the unsimplified definition by mere transformations results in a [[lax pullback]]. In a [[(2,1)-category]], any [[comma object]] or [[lax pullback]] is also a 2-pullback, but this is not true in a general 2-category. Note that comma objects are often misleadingly called lax pullbacks. [[!redirects 2-pullback]] [[!redirects 2-pullbacks]] [[!redirects 2-fiber product]] [[!redirects 2-fiber products]] [[!redirects bipullback]] [[!redirects bipullbacks]] [[!redirects bi-pullback]] [[!redirects bi-pullbacks]] [[!redirects bi-iso-comma-object]] [[!redirects bi-iso-comma-objects]] [[!redirects iso-comma-object]] [[!redirects iso-comma-objects]] [[!redirects strict iso-comma-object]] [[!redirects strict iso-comma-objects]] [[!redirects iso-comma object]] [[!redirects iso-comma objects]] [[!redirects strict iso-comma object]] [[!redirects strict iso-comma objects]] [[!redirects pseudopullback]] [[!redirects pseudopullbacks]] [[!redirects pseudo-pullback]] [[!redirects pseudo-pullbacks]] [[!redirects pseudo pullback]] [[!redirects pseudo pullbacks]] [[!redirects strict pseudopullback]] [[!redirects strict pseudopullbacks]] [[!redirects strict pseudo-pullback]] [[!redirects strict pseudo-pullbacks]] [[!redirects strict pseudo pullback]] [[!redirects strict pseudo pullbacks]] \end{document}