\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-rig} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{rigs}{}\section*{{$2$-rigs}}\label{rigs} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definitions}{Definitions}\dotfill \pageref*{Definitions} \linebreak \noindent\hyperlink{EnrichedMonoidalCategories}{Enriched monoidal categories}\dotfill \pageref*{EnrichedMonoidalCategories} \linebreak \noindent\hyperlink{MonoidalCompleteCateories}{Compatibly monoidal cocomplete categories}\dotfill \pageref*{MonoidalCompleteCateories} \linebreak \noindent\hyperlink{CompatiblyMonoidalPresentableCategories}{Compatibly monoidal presentable categories}\dotfill \pageref*{CompatiblyMonoidalPresentableCategories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{PropertiesInitialObject}{Initial object}\dotfill \pageref*{PropertiesInitialObject} \linebreak \noindent\hyperlink{TannakaDuality}{Tannaka duality}\dotfill \pageref*{TannakaDuality} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{$2$-rig} is supposed to be a [[categorification]] of that of a [[rig]]. Several inequivalent formalizations of this idea are in the literature. Just as a rig is a multiplicative [[monoid]] whose underlying set also has a notion of addition, so a $2$-rig is a [[monoidal category]] whose underlying category also has a notion of addition, and we can describe this notion of addition in a few different ways. Note that we don't expect a $2$-rig to have additive inverses; by the same argument as in the [[Eilenberg swindle]], they are unreasonable to expect. However, in a monoidal [[abelian category]], we have as close to additive inverses as is reasonable and so a categorification of a [[ring]]. Compare also the notion of [[rig category]]. \hypertarget{Definitions}{}\subsection*{{Definitions}}\label{Definitions} Since [[categorification]] involves some arbitrary choices that will be determined by the precise intended application, there is a bit of flexibility of what exactly one may want to call a \emph{2-ring}. We first list some immediate possibilities of classes of monoidal and enriched categories that one may want to think of as 2-rings: \begin{itemize}% \item \hyperlink{EnrichedMonoidalCategories}{Enriched monoidal categories} \end{itemize} But a central aspect of an ordinary ring is the [[distributivity law]] which says that the product in the ring preserves sums. Since sums in a 2-ring are given by [[colimits]], this suggests that a 2-ring should be a cocomplete category which is compatibly [[monoidal category|monoidal]] in that the the tensor product preserves colimits: \begin{itemize}% \item \hyperlink{MonoidalCompleteCateories}{Compatibly monoidal cocomplete categories} \end{itemize} But there are still more properties which one may want to enforce, notably that homomorphisms of 2-rings form a [[2-abelian group]]. This is achieved by demanding the underlying category to be not just cocomplete by [[presentable category|presentable]]: \begin{itemize}% \item \hyperlink{CompatiblyMonoidalPresentableCategories}{Compatibly monoidal presentable categories}. \end{itemize} \hypertarget{EnrichedMonoidalCategories}{}\subsubsection*{{Enriched monoidal categories}}\label{EnrichedMonoidalCategories} \begin{enumerate}% \item A \textbf{$2$-rig} might be an [[Ab-enriched category]] which is [[enriched monoidal category|enriched monoidal]]. \item A \textbf{$2$-rig} might be an [[additive category]] which is enriched monoidal. \item A \textbf{$2$-rig} might be a [[distributive monoidal category]]: a monoidal category with finite [[coproducts]] such that the monoidal product distributes over the coproducts. \item A \textbf{$2$-rig} might be a [[closed monoidal category]] with finite coproducts. \item Finally, a \textbf{$2$-ring} is a monoidal [[abelian category]]. \end{enumerate} Note that (2) is a special case of both (1) and (3), which are independent. (4) is a special case of (3), by the [[adjoint functor theorem]]. (5) is a special case of (2), of course. \hypertarget{MonoidalCompleteCateories}{}\subsubsection*{{Compatibly monoidal cocomplete categories}}\label{MonoidalCompleteCateories} In (\hyperlink{BaezDolan}{Baez-Dolan}) the following is considered: \begin{defn} \label{BD2Rig}\hypertarget{BD2Rig}{} A \emph{2-rig} is a [[monoidal category|monoidal]] [[colimit|cocomplete category]] where the [[tensor product]] respects [[colimits]]. \end{defn} One can define [[braided monoidal category|braided]] and [[symmetric monoidal category|symmetric]] 2-rigs in this sense (and indeed, also in the other senses listed above). In particular, there is a [[2-category]] $\mathbf{Symm2Rig}$ with: \begin{itemize}% \item symmetric monoidal cocomplete categories where the monoidal product distributes over colimits as objects, \item symmetric monoidal cocontinuous functors as 1-morphisms, \item symmetric monoidal natural transformations as 2-morphisms. \end{itemize} \hypertarget{CompatiblyMonoidalPresentableCategories}{}\subsubsection*{{Compatibly monoidal presentable categories}}\label{CompatiblyMonoidalPresentableCategories} The following refines the \hyperlink{MonoidalCompleteCateories}{above} by demanding the underlying category of a 2-ring to be not just cocomplete but even a [[presentable category]]. This was motivated in (\hyperlink{CJF}{CJF, remark 2.1.10}). \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} 2 Ab \in 2Cat \end{displaymath} for the [[2-category]] of [[presentable categories]] and [[colimit]]-preserving [[functors]] between them. \end{defn} (\hyperlink{CJF}{CJF, def. 2.1.8}) \begin{remark} \label{}\hypertarget{}{} By the [[adjoint functor theorem]] this is equivalently the 2-category of presentable categories and [[left adjoint]] functors between them. \end{remark} \begin{example} \label{CategoryOfModulesAs2AbelianGroup}\hypertarget{CategoryOfModulesAs2AbelianGroup}{} Given an ordinary [[ring]] $R$, its [[category of modules]] $Mod_R$ is presentable, hence may be regarded as a 2-abelian group. \end{example} (\hyperlink{CJF}{CJF, example 2.1.5}) \begin{prop} \label{}\hypertarget{}{} The 2-category $2Ab$ is a [[closed monoidal 2-category|closed]] [[symmetric monoidal 2-category]] with respect to the [[tensor product]] $\boxtimes \colon 2Ab \times 2Ab \to 2Ab$ such that for $A,B, C \in 2Ab$, $Hom_{2Ab}(A \boxtimes B, C)$ is equivalently the full [[subcategory]] of [[functor category]] $Hom_{Cat}(A \times B, C)$ on those that are [[bilinear function|bilinear]] in that they preserve [[colimits]] in each argument separately. \end{prop} See also at [[Pr(∞,1)Cat]] for more on this. \begin{example} \label{}\hypertarget{}{} For $\mathcal{C}$ a [[small category]], the [[category of presheaves]] $Set^{\mathcal{C}}$ is [[presentable category|presentable]] and \begin{displaymath} Set^{\mathcal{C}_1} \boxtimes Set^{\mathcal{C}_2} \simeq Set^{\mathcal{C}_1 \times \mathcal{C}_2} \,. \end{displaymath} \end{example} \begin{example} \label{TensorProductModuleCategoriesAsOf2AbelianGroups}\hypertarget{TensorProductModuleCategoriesAsOf2AbelianGroups}{} For $R$ a [[ring]] the [[category of modules]] $Mod_R$ is presentable and \begin{displaymath} Mod_{R_1} \boxtimes Mod_{R_2} \simeq Mod_{R_1 \otimes R_2} \,, \end{displaymath} \end{example} (\hyperlink{CJF}{CJF, example 2.2.7}) \begin{prop} \label{EilenbergWattsTheorem}\hypertarget{EilenbergWattsTheorem}{} For $R_1, R_2$ two rings, the category of 2-abelian group homomorphisms between the [[categories of modules]] is [[natural equivalence|naturally equivalent]] to that of $R_1$-$R_2$-[[bimodules]] and their [[intertwiners]]: \begin{displaymath} (-)\otimes (-) \;\colon\; {}_{R_1}Mod_{R_2} \stackrel{\simeq}{\to} Hom_{2Ab}(Mod_{R_1}, Mod_{R_2}) \,. \end{displaymath} The equivalence sends a bimodule $N$ to the functor given by the [[tensor product]] over $R_1$: \begin{displaymath} (-) \otimes N \;\colon\; Mod_{R_1} \to Mod_{R_2} \,. \end{displaymath} \end{prop} This is the [[Eilenberg-Watts theorem]]. \begin{defn} \label{2RingAsCompatiblyMonoidalPresentableCategory}\hypertarget{2RingAsCompatiblyMonoidalPresentableCategory}{} Write \begin{displaymath} 2Ring \in 2Cat \end{displaymath} for the [[2-category]] of [[monoid objects]] [[internalization|internal]] to $2 Ab$. An [[object]] of this 2-category we call a \textbf{2-ring}. Equivalently, a 2-ring in this sense is a [[presentable category]] equipped with the structure of a [[monoidal category]] where the [[tensor product]] preserves [[colimits]]. \end{defn} (\hyperlink{CJF}{CJF, def. 2.1.8}) \begin{example} \label{}\hypertarget{}{} The category [[Set]] with its [[cartesian product]] is a 2-ring and it is the [[initial object]] in $2Ring$. \end{example} (\hyperlink{CJF}{CJF, example 2.3.4}) \begin{example} \label{}\hypertarget{}{} The category [[Ab]] of [[abelian groups]] with its standard [[tensor product of abelian groups]] is a 2-ring. \end{example} \begin{example} \label{CommutativeRingGivesCommutative2Ring}\hypertarget{CommutativeRingGivesCommutative2Ring}{} For $R$ an ordinary [[commutative ring]], $Mod_R$ equipped with its usual [[tensor product of modules]] is a commutative 2-ring. \end{example} \begin{example} \label{}\hypertarget{}{} For $R$ an ordinary [[ring]] and $Mod_R$ its ordinary [[category of modules]], regarded as a 2-abelian group by example \ref{CategoryOfModulesAs2AbelianGroup}, the structure of a 2-ring on $Mod_R$ is equivalently the structure of a [[sesquiunital sesquialgebra]] on $R$. If $R$ is in addition a [[commutative ring]] that $Mod_R$ is a commutative 2-ring and is canonically an $Ab$-[[2-algebra]] in that \begin{displaymath} Ab \simeq Mod_{\mathbb{Z}} \to Mod_R \,. \end{displaymath} \end{example} (\hyperlink{CJF}{CJF, example 2.3.7}) \begin{defn} \label{}\hypertarget{}{} For $A$ a 2-ring, def. \ref{2RingAsCompatiblyMonoidalPresentableCategory}, write \begin{displaymath} 2Mod_A \in 2Cat \end{displaymath} for the [[2-category]] of [[module objects]] over $A$ in $2Ab$. This means that a 2-module over $A$ is a [[presentable category]] $N$ equipped with a functor \begin{displaymath} A \boxtimes N \to N \end{displaymath} which satisfies the evident action property. \end{defn} (\hyperlink{CJF}{CJF, def. 2.3.3}) \begin{example} \label{}\hypertarget{}{} Let $R$ be an ordinary [[commutative ring]] and $A$ an ordinary $R$-[[associative algebra|algebra]]. Then by example \ref{CategoryOfModulesAs2AbelianGroup} $Mod_A$ is a 2-abelian group and by example \ref{CommutativeRingGivesCommutative2Ring} $Mod_R$ is a commutative ring. By example \ref{TensorProductModuleCategoriesAsOf2AbelianGroups} $Mod_R$-[[2-module]] structures on $Mod_A$ \begin{displaymath} Mod_R \boxtimes \Mod_A \to Mod_A \end{displaymath} correspond to colimit-preserving functors \begin{displaymath} Mod_{R \otimes_{\mathbb{Z}} A} \to Mod_{A} \end{displaymath} that satisfy the action property. Such as presented under the [[Eilenberg-Watts theorem]], prop. \ref{EilenbergWattsTheorem}, by $R \otimes_{\mathbb{Z}} A$-$A$ [[bimodules]]. $A$ itself is canonically such a bimodule and it exhibits a $Mod_R$-[[2-module]] structure on $Mod_A$. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{PropertiesInitialObject}{}\subsubsection*{{Initial object}}\label{PropertiesInitialObject} \begin{remark} \label{}\hypertarget{}{} The analog role in 2-rigs to the role played by the [[natural numbers]] among ordinary [[rigs]] should be played by the standard [[categorification]] of the natural numbers: the [[category of finite sets]]. One is therefore inclined to demand that a reasonable definition of 2-rigs should be such that $FinSet$ is the [[initial object]] (in the suitably higher categorical sense) in the [[2-category]] of 2-rigs. For the notion in def. \ref{BD2Rig} this was conjectured by [[John Baez]], for the notion in def. \ref{2RingAsCompatiblyMonoidalPresentableCategory} this is asserted in (\hyperlink{CJF}{Chirvasitu \& Johnson-Freyd, example 2.3.4}). \end{remark} \hypertarget{TannakaDuality}{}\subsubsection*{{Tannaka duality}}\label{TannakaDuality} [[!include structure on algebras and their module categories - table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[2-algebraic geometry]] \item A further slight variant of compatibly monoidal cocomplete categories is that of \emph{monoidal [[vectoids]]}. \item [[distributivity for monoidal structures]] \item [[prime spectrum of a monoidal stable (∞,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The proposal that a 2-ring should be a compatibly monoidal cocomplete category is due to \begin{itemize}% \item [[John Baez]], [[James Dolan]], \emph{Higher-dimensional algebra III: $n$-categories and the algebra of opetopes}, \emph{Adv. Math.} \textbf{135} (1998), 145-206. (\href{http://arxiv.org/abs/q-alg/9702014}{arXiv}) \end{itemize} The proposal that a 2-ring should be a compatibly monoidal presentable category is due to \begin{itemize}% \item [[Alexandru Chirvasitu]], [[Theo Johnson-Freyd]], \emph{The fundamental pro-groupoid of an affine 2-scheme} (\href{http://arxiv.org/abs/1105.3104}{arXiv:1105.3104}) \end{itemize} see also \begin{itemize}% \item [[Martin Brandenburg]], \emph{Tensor categorical foundations of algebraic geometry} (\href{http://arxiv.org/abs/1410.1716}{arXiv:1410.1716}) \end{itemize} This is related to \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Tannaka duality for geometric stacks]]}. \end{itemize} A similar notion is that of ``monoidal [[vectoid]]'' due to \begin{itemize}% \item [[Nikolai Durov]], \emph{Classifying vectoids and generalisations of operads}, Proc. of Steklov Inst. of Math. \textbf{273}:1, 48-63 (2011) \href{http://arxiv.org/abs/1105.3114}{arxiv/1105.3114}), the translation of `` '', Trudy MIAN, vol. 273 \end{itemize} The role of presentable categories as higher analogs abelian groups in the context of [[(infinity,1)-categories]] have been made by [[Jacob Lurie]], see at \emph{[[Pr(infinity,1)Cat]]}. Another, more algebraic, notion of a categorical ring is introduced in \begin{itemize}% \item M. Jibladze , T. Pirashvili, \emph{Third Mac Lane cohomology via categorical rings}, J. of homotopy and related structures, \textbf{2}(2), 2007, 187--221 \href{http://www.emis.de/journals/JHRS/volumes/2007/n2a10/v2n2a10.pdf}{pdf} \href{http://arxiv.org/abs/math/0608519}{math.KT/0608519} \end{itemize} [[!redirects 2-rig]] [[!redirects 2-rigs]] [[!redirects 2-ring]] [[!redirects 2-rings]] [[!redirects 2Rig]] [[!redirects 2Ring]] \end{document}