\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-sheaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,2)$-Topos theory}}\label{topos_theory} [[!include (infinity,2)-topos theory - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{characterization_of_over_sites}{Characterization of over $(n,r)$-sites}\dotfill \pageref*{characterization_of_over_sites} \linebreak \noindent\hyperlink{over_a_1site}{Over a 1-site}\dotfill \pageref*{over_a_1site} \linebreak \noindent\hyperlink{over_a_site__as_internal_categories}{Over a $(2,1)$-site -- As internal categories}\dotfill \pageref*{over_a_site__as_internal_categories} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{codomain_fibrations__sheaves_of_modules}{Codomain fibrations / sheaves of modules}\dotfill \pageref*{codomain_fibrations__sheaves_of_modules} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{ReferencesInTermsOfInternalCategories}{In terms of categories internal to sheaf toposes}\dotfill \pageref*{ReferencesInTermsOfInternalCategories} \linebreak \noindent\hyperlink{InTermsOfFiberedCategories}{In terms of fibered categories}\dotfill \pageref*{InTermsOfFiberedCategories} \linebreak \noindent\hyperlink{2sites}{2-Sites}\dotfill \pageref*{2sites} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{2-sheaf} is the generalization of the notion of [[sheaf]] to the [[higher category theory]] of [[2-categories]]/[[bicategories]]. A 2-category of 2-sheaves forms a [[2-topos]]. \begin{remark} \label{}\hypertarget{}{} A \emph{2-sheaf} is a higher sheaf of [[categories]]. More restrictive than this is a higher sheaf with values in [[groupoids]], which would be a \emph{[[(2,1)-sheaf]]}. Both these notions are often referred to as \textbf{[[stack]]}, or sometimes ``stack of groupoids'' and ``stack of categories'' for definiteness. But moreover, traditionally a [[stack]] (in either flavor) is considered only over a [[1-site]], whereas it makes sense to consider [[(2,1)-sheaves]] more generally over [[(2,1)-sites]] and 2-sheaves over [[2-sites]]. Therefore, saying ``2-sheaf'' serves to indicate the full generality of the notion of higher sheaves in [[2-category theory]], as opposed to various special cases of this general notion which have traditionally been considered. \end{remark} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a [[2-site]] having finite [[2-limit]]s (for convenience). For a covering family $(f_i:U_i\to U)_i$ we have the comma objects We also have the [[nlab:double comma object|double comma objects]] $(f_i/f_j/f_k) = (f_i/f_j)\times_{U_j} (f_j/f_k)$ with projections $r_{i j k}:(f_i/f_j/f_k)\to (f_i/f_j)$, $s_{i j k}:(f_i/f_j/f_k)\to (f_j/f_k)$, and $t_{i j k}:(f_i/f_j/f_k)\to (f_i/f_k)$. Now, a functor $X:C^{op} \to Cat$ is called a \textbf{2-presheaf}. It is \textbf{1-separated} if \begin{itemize}% \item For any covering family $(f_i:U_i\to U)_i$ and any $x,y\in X(U)$ and $a,b: x\to y$, if $X(f_i)(a) = X(f_i)(b)$ for all $i$, then $a=b$. \end{itemize} It is \textbf{2-separated} if it is 1-separated and \begin{itemize}% \item For any covering family $(f_i:U_i\to U)_i$ and any $x,y\in X(U)$, given $b_i:X(f_i)(x) \to X(f_i)(y)$ such that $\mu_{i j}(y) \circ X(p_{i j})(b_i) = X(q_{i j})(b_i) \circ \mu_{i j}(x)$, there exists a (necessarily unique) $b:x\to y$ such that $b_i = X(f_i)(b)$. \end{itemize} It is a \textbf{2-sheaf} if it is 2-separated and \begin{itemize}% \item For any covering family $(f_i:U_i\to U)_i$ and any $x_i\in X(U_i)$ together with morphisms $\zeta_{i j}:X(p_{i j})(x_i) \to X(q_{i j})(x_j)$ such that the following diagram commutes:\begin{displaymath} \itexarray{X(r_{i j k})X(p_{i j})(x_i) & \overset{X(r_{i j k})(\zeta_{i j})}{\to} & X(r_{i j k})X(q_{i j})(x_j) & \overset{\cong}{\to} & X(s_{i j k})X(p_{j k})(x_j)\\ ^\cong \downarrow && && \downarrow ^{X(s_{i j k})(\zeta_{j k})}\\ X(t_{i j k}) X(p_{i k})(x_i) & \underset{X(t_{i j k})(\zeta_{i k})}{\to} & X(t_{i j k}) X(q_{i k})(x_k) & \underset{\cong}{\to} & X(s_{i j k}) X(q_{j k})(x_k)} \end{displaymath} there exists an object $x\in X(U)$ and isomorphisms $X(f_i)(x)\cong x_i$ such that for all $i,j$ the following square commutes: \begin{displaymath} \itexarray{ X(p_{i j})X(f_i)(X) & \overset{\cong}{\to} & X(p_{i j})(x_i)\\ ^{X(\mu_{i j})}\downarrow && \downarrow^{\zeta_{i j}}\\ X(q_{i j})X(f_j)(x) & \underset{\cong}{\to} & X(q_{i j})(x_j).} \end{displaymath} \end{itemize} A 2-sheaf, especially on a 1-site, is frequently called a \textbf{[[stack]]}. However, this has the unfortunate consequence that a 3-sheaf is then called a 2-stack, and so on with the numbering all offset by one. Also, it can be helpful to use a new term because of the notable differences between 2-sheaves on 2-sites and 2-sheaves on 1-sites. The main novelty is that $\mu_{i j}$ and $\zeta_{i j}$ \emph{need not be invertible}. Note, though, they must be invertible as soon as $C$ is (2,1)-site: $\mu_{i j}$ by definition and $\zeta_{i j}$ since an inverse is provided by $\iota_{i j}^*(\zeta_{i j})$, where $\iota_{i j}\mapsto (f_i/f_j) \to (f_j/f_i)$ is the symmetry equivalence. If $C$ lacks finite limits, then in the definitions of ``2-separated'' and ``2-sheaf'' instead of the comma objects $(f_i/f_j)$, we need to use arbitrary objects $V$ equipped with maps $p:V\to U_i$, $q:V\to U_j$, and a 2-cell $f_i p \to f_j q$. We leave the precise definition to the reader. A 2-site is said to be \textbf{subcanonical} if for any $U\in C$, the representable functor $C(-,U)$ is a 2-sheaf. When $C$ has finite limits, it is easy to verify that this is true precisely when every covering family is a (necessarily pullback-stable) quotient of its kernel [[2-polycongruence]]. In particular, the regular coverage on a regular 2-category is subcanonical, as is the coherent coverage on a coherent 2-category. The 2-category $2Sh(C)$ of 2-sheaves on a small 2-site $C$ is, by definition, a [[Grothendieck 2-topos]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{characterization_of_over_sites}{}\subsubsection*{{Characterization of over $(n,r)$-sites}}\label{characterization_of_over_sites} If the underlying [[2-site]] happens to be an [[(n,r)-site]] for $n$ and/or $r$ lower than 2, there may be other equivalent ways to think of 2-sheaves. A [[2-topos]] with a [[2-site]] of definition that happens to be just a 1-site or [[(2,1)-site]] is \emph{1-localic} or \emph{(2,1)-localic}. \hypertarget{over_a_1site}{}\paragraph*{{Over a 1-site}}\label{over_a_1site} Over a 1-site, the [[Grothendieck construction]] says that [[2-functors]] on the site are equivalent to [[fibered categories]] over the site. Hence in this case the theory of 2-sheaves can be entirely formulated in terms of fibered categories. See \emph{\hyperlink{InTermsOfFiberedCategories}{References -- In terms of fibered categories}}. Also, over a 1-site a 2-sheaf is essentially a \emph{[[indexed category]]}. Therefore stacks over 1-sites can also be discussed in this language, see notably the work (\hyperlink{BungePare}{Bunge-Pare}). In particular, if the 1-site $C$ is a [[topos]], then every topos \emph{over} $C$ as its [[base topos]] (a $C$-topos) induces an [[indexed category]]. \begin{prop} \label{}\hypertarget{}{} If $C$ is a topos and $E$ is a $C$-topos, then (the [[indexed category]] corresponding to) $E$ is a 2-sheaf on $C$ with respect to the [[canonical topology]]. \end{prop} This appears as (\hyperlink{BungePare}{Bunge-Pare, corollary 2.6}). Moreover, over a [[1-site]] the [[2-topos]] of 2-sheaves ought to be equivalent to the (suitably defined) [[2-category]] of [[internal categories]] in the underlying [[1-topos]]. See \emph{\hyperlink{ReferencesInTermsOfInternalCategories}{References -- In terms of internal categories}}. \hypertarget{over_a_site__as_internal_categories}{}\paragraph*{{Over a $(2,1)$-site -- As internal categories}}\label{over_a_site__as_internal_categories} Over a [[(2,1)-site]] the [[2-topos]] of 2-sheaves ought to be equivalent to the [[2-category]] of [[internal (infinity,1)-categories]] in the corresponding [[(2,1)-topos]]. This is discussed at \emph{\href{2-topos#InTermsOfInternalCategories}{2-Topos -- In terms of internal categories}}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{codomain_fibrations__sheaves_of_modules}{}\subsubsection*{{Codomain fibrations / sheaves of modules}}\label{codomain_fibrations__sheaves_of_modules} A classical class of examples for 2-sheaves are [[codomain fibrations]] over suitable sites, or rather their [[tangent categories]]. As discussed there, this includes the case of sheaves of categories of [[modules]] over sites of [[algebra over an algebraic theory|algebras]]. \begin{prop} \label{}\hypertarget{}{} For $C$ an [[exact category]] with [[finite limits]], the [[codomain fibration]] $Cod : C^I \to C$ or equivalently (under the [[Grothendieck construction]]), the self-[[indexed category|indexing]] of $C$ is a 2-sheaf with respect to the [[canonical topology]]. \end{prop} This is for instance (\hyperlink{BungePare}{Bunge-Pare, corollary 2.4}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[presheaf]] / [[sheaf]] / [[cosheaf]] \item \textbf{2-sheaf} / [[stack]] \item [[(∞,1)-sheaf]] / [[∞-stack]] \item [[(∞,2)-sheaf]] \item [[(∞,n)-sheaf]] \item [[descent]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Historically, the original definition of \emph{[[stack]]} included the case of category-valued functors, hence of 2-sheaves, in: \begin{itemize}% \item [[J. Giraud]], \emph{Cohomologie non ab\'e{}lienne, Grundlehren number 179, Springer Verlag (1971)} \end{itemize} \hypertarget{ReferencesInTermsOfInternalCategories}{}\subsubsection*{{In terms of categories internal to sheaf toposes}}\label{ReferencesInTermsOfInternalCategories} Category-valued stacks as [[internal categories]] in the underlying [[sheaf topos]] have been considered in \begin{itemize}% \item [[Marta Bunge]], [[Robert Pare]], \emph{Stacks and equivalence of indexed categories}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 20 no.4 (1979) (\href{http://www.numdam.org/item?id=CTGDC_1979__20_4_373_0}{numdam}) \end{itemize} \begin{itemize}% \item [[Marta Bunge]], \emph{Stack completions and Morita equivalence for categories in a topos}, Cahiers de topologie et g\'e{}om\'e{}trie diff\'e{}rentielle xx-4, (1979) 401-436, (\href{http://www.ams.org/mathscinet-getitem?mr=558106}{MR558106}, \href{http://www.numdam.org/item?id=CTGDC_1979__20_4_401_0}{numdam}) \end{itemize} and in section 3 of \begin{itemize}% \item [[André Joyal]], [[Myles Tierney]], \emph{Strong stacks and classifying spaces} Category theory ([[Como]], 1990), 213---236, Lecture Notes in Math. 1488, Springer (1991) (\href{http://www.pps.jussieu.fr/~mellies/semantics-operads-categories/joyal-tierney-strong-stacks.pdf}{pdf}) \end{itemize} \hypertarget{InTermsOfFiberedCategories}{}\subsubsection*{{In terms of fibered categories}}\label{InTermsOfFiberedCategories} A discussion of stacks over [[1-sites]] in terms of their [[Grothendieck construction|associated]] [[fibered categories]] is in \begin{itemize}% \item [[Angelo Vistoli]], \emph{Notes on Grothendieck topologies, fibered categories and descent theory} (\href{http://homepage.sns.it/vistoli/descent.pdf}{pdf}) \end{itemize} \hypertarget{2sites}{}\subsubsection*{{2-Sites}}\label{2sites} The above text involves content transferred from \begin{itemize}% \item [[Michael Shulman]], \emph{[[michaelshulman:2-site]]} \end{itemize} 2-sites were earlier considered in \begin{itemize}% \item [[Ross Street]], \emph{[[StreetCBS]]} \end{itemize} [[!redirects 2-sheaves]] \end{document}