\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-site} This entry is about the notion of [[site]] in [[2-category]] theory. For the notion ``bisite'' of a 1-categorical site equipped with two coverages see instead [[separated presheaf]]. \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,2)$-Topos theory}}\label{topos_theory} [[!include (infinity,2)-topos theory - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{saturation_conditions}{Saturation conditions}\dotfill \pageref*{saturation_conditions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of [[2-site]] is the generalization of the notion of [[site]] to the [[higher category theory]] of [[2-categories]] ([[bicategories]]). Over a 2-site one has a [[2-topos]] of [[2-sheaves]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{[[coverage]]} on a [[2-category]] $C$ consists of, for each object $U\in C$, a collection of families $(f_i: U_i\to U)_i$ of morphisms with codomain $U$, called \emph{covering families}, such that \begin{itemize}% \item If $(f_i:U_i\to U)_i$ is a covering family and $g:V\to U$ is a morphism, then there exists a covering family $(h_j:V_j\to V)_j$ such that each composite $g h_j$ factors through some $f_i$, up to isomorphism. \end{itemize} This is the 2-categorical analogue of the 1-categorical notion of [[nlab:coverage|coverage]] introduced in the [[nlab:Elephant|Elephant]]. A 2-category equipped with a coverage is called a \textbf{2-site}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item If $C$ is a [[michaelshulman:regular 2-category]], then the collection of all singleton families $(f:V\to U)$, where $f$ is eso, forms a coverage called the \emph{regular coverage}. \item Likewise, if $C$ is a [[michaelshulman:coherent 2-category]], the collection of all finite jointly-eso families forms a coverage called the \emph{coherent coverage}. \item On $Cat$, the \emph{canonical coverage} consists of all families that are jointly essentially surjective on objects. \end{itemize} \hypertarget{saturation_conditions}{}\subsection*{{Saturation conditions}}\label{saturation_conditions} A \textbf{pre-Grothendieck coverage} on a 2-category is a coverage satisfying the following additional conditions: \begin{itemize}% \item If $f:V\to U$ is an equivalence, then the one-element family $(f:V\to U)$ is a covering family. \item If $(f_i:U_i\to U)_{i\in I}$ is a covering family and for each $i$, so is $(h_{i j}:U_{i j} \to U_i)_{j\in J_i}$, then $(f_i h_{i j}:U_{i j}\to U)_{i\in I, j\in U_i}$ is also a covering family. \end{itemize} This is the 2-categorical version of a [[Grothendieck pretopology]] (minus the common condition of having actual [[pullbacks]]). Now, a \textbf{sieve} on an object $U\in C$ is defined to be a functor $R:C^{op}\to Cat$ with a transformation $R\to C(-,U)$ which is objectwise fully faithful (equivalently, it is a [[fully faithful morphism]] in $[C^{op},Cat]$). Equivalently, it may be defined as a subcategory of the [[slice 2-category]] $C/U$ which is closed under precomposition with all morphisms of $C$. Every family $(f_i\colon U_i\to U)_i$ generates a sieve by defining $R(V)$ to be the full subcategory of $C(V,U)$ on those $g:V\to U$ such that $g \cong f_i h$ for some $i$ and some $h:V\to U_i$. The following observation is due to \hyperlink{StreetCBS}{StreetCBS}. \begin{lemma} \label{}\hypertarget{}{} A 2-presheaf $X:C^{op}\to Cat$ is a 2-sheaf for a covering family $(f_i:U_i\to U)_i$ if and only if \begin{displaymath} X(U) \simeq[C^{op},Cat](C(-,U),X) \to [C^{op},Cat](R,X) \end{displaymath} is an equivalence, where $R$ is the sieve on $U$ generated by $(f_i:U_i\to U)_i$. \end{lemma} Therefore, just as in the 1-categorical case, it is natural to restrict attention to covering \emph{sieves}. We define a \textbf{Grothendieck coverage} on a 2-category $C$ to consist of, for each object $U$, a collection of sieves on $U$ called covering sieves, such that \begin{itemize}% \item If $R$ is a covering sieve on $U$ and $g:V\to U$ is any morphism, then $g^*(R)$ is a covering sieve on $V$. \item For each $U$ the sieve $M_U$ consisting of \emph{all} morphisms into $U$ (the sieve generated by the singleton family $(1_U)$) is a covering sieve. \item If $R$ is a covering sieve on $U$ and $S$ is an arbitrary sieve on $U$ such that for each $f:V\to U$ in $R$, $f^*(S)$ is a covering sieve on $V$, then $S$ is also a covering sieve on $U$. \end{itemize} Here if $R$ is a sieve on $U$ and $g:V\to U$ is a morphism, $g^*(R)$ denotes the sieve on $V$ consisting of all morphisms $h$ into $V$ such that $g h$ factors, up to isomorphism, through some morphism in $R$. As in the 1-categorical case, one can then show that every coverage generates a unique Grothendieck coverage having the same 2-sheaves. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item The [[2-category]] of [[2-sheaf|2-sheaves]] on a 2-site is a [[Grothendieck 2-topos]]. \item If $C$ is a [[1-category]] regarded as a 2-category with only [[identity morphism|identity]] [[2-morphisms]], then a coverage (pretopology, topology) on $C$ reduces to the usual notion of [[coverage]], [[Grothendieck pretopology]], or [[Grothendieck topology]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[(n,r)-site]] \item [[1-site]] \item \textbf{2-site}, [[(2,1)-site]] \item [[(∞,1)-site]] \begin{itemize}% \item [[model site]], [[simplicial site]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Strict 2-sites were considered in \begin{itemize}% \item [[Ross Street]], \emph{Two-dimensional sheaf theory} J. Pure Appl. Algebra \textbf{23} (1982), no. 3, 251-270, \href{http://www.ams.org/mathscinet-getitem?mr=644277}{MR83d:18014}, \end{itemize} Bicategorical 2-sites in \begin{itemize}% \item [[Ross Street]], [[zoranskoda:Characterization of Bicategories of Stacks]], \href{http://www.ams.org/mathscinet-getitem?mr=682967}{MR84d:18006}, p. 282-291 in: Category theory (Gummersbach 1981) Springer LNM \textbf{962}, 1982 \end{itemize} See also \emph{[[StreetCBS]]}. More discussion is in \begin{itemize}% \item [[Michael Shulman]], \emph{[[michaelshulman:2-site]]} \end{itemize} [[!redirects 2-sites]] [[!redirects (2,2)-site]] [[!redirects (2,2)-sites]] [[!redirects bisite]] [[!redirects bisites]] [[!redirects Grothendieck 2-topology]] [[!redirects 2-Grothendieck topology]] [[!redirects Grothendieck 2-topologies]] [[!redirects 2-Grothendieck topologies]] [[!redirects Grothendieck 2-pretopology]] [[!redirects 2-Grothendieck pretopology]] [[!redirects Grothendieck 2-pretopologies]] [[!redirects 2-Grothendieck pretopologies]] [[!redirects 2-coverage]] [[!redirects 2-coverages]] [[!redirects topology on a 2-category]] [[!redirects topologies on 2-categories]] [[!redirects Grothendieck topology on a 2-category]] [[!redirects Grothendieck topologies on 2-categories]] [[!redirects coverage on a 2-category]] [[!redirects coverages on 2-categories]] [[!redirects topology on a bicategory]] [[!redirects topologies on bicategories]] [[!redirects Grothendieck topology on a bicategory]] [[!redirects Grothendieck topologies on bicategories]] [[!redirects coverage on a bicategory]] [[!redirects coverages on bicategories]] \end{document}