\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,2)$-Topos theory}}\label{topos_theory} [[!include (infinity,2)-topos theory - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{characterization_of_2sheaf_2toposes}{Characterization of 2-sheaf 2-toposes}\dotfill \pageref*{characterization_of_2sheaf_2toposes} \linebreak \noindent\hyperlink{localic_2toposes}{$(n,r)$-Localic 2-toposes}\dotfill \pageref*{localic_2toposes} \linebreak \noindent\hyperlink{InTermsOfInternalCategories}{In terms of internal categories}\dotfill \pageref*{InTermsOfInternalCategories} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_archetypical_2topos}{The archetypical 2-topos}\dotfill \pageref*{the_archetypical_2topos} \linebreak \noindent\hyperlink{internal_categories_in_a_topos}{Internal categories in a $(2,1)$-topos}\dotfill \pageref*{internal_categories_in_a_topos} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \textbf{2-topos} is the generalization of the notion of [[topos]] from [[category theory]] to the [[higher category theory]] of [[2-categories]]. There are multiple conceivable such generalizations, depending in particular on whether one tries to generalize the notion of [[Grothendieck topos]] or of [[elementary topos]], and in the latter case what axioms one chooses to take as the basis for generalization. In contrast, [[(n,1)-topos|(2,1)-toposes]] are much better understood. A \emph{Grothendieck 2-topos} is a [[2-category]] of [[2-sheaves]] over a [[2-site]]. A \emph{Grothendieck (2,1)-topos} is a [[(2,1)-category]] of [[(2,1)-sheaves]] over a [[(2,1)-site]]. See also [[higher topos theory]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{characterization_of_2sheaf_2toposes}{}\subsubsection*{{Characterization of 2-sheaf 2-toposes}}\label{characterization_of_2sheaf_2toposes} The [[2-toposes]] of [[2-sheaves]] over a [[2-site]] are special among all 2-toposes, in direct generalization of how [[sheaf toposes]] (``[[Grothendieck toposes]]'') are special among all [[toposes]]. In that case, \emph{[[Giraud's theorem]]} famously characterizes sheaf toposes. This characterization has a 2-categorical analog: the \emph{[[2-Giraud theorem]]}. \hypertarget{localic_2toposes}{}\subsubsection*{{$(n,r)$-Localic 2-toposes}}\label{localic_2toposes} A [[2-sheaf]] [[2-topos]] is ``$(n,r)$-localic'' or ``$(n,r)$-truncated'' if it has an [[(n,r)-site]] of definition. In particular a $(2,1)$-localic 2-topos is the same as a [[(2,1)-topos]]. \hypertarget{InTermsOfInternalCategories}{}\subsubsection*{{In terms of internal categories}}\label{InTermsOfInternalCategories} Given a 2-topos $\mathcal{X}$, regard it is a [[2-site]] by equipping it with its [[canonical topology]]. \begin{defn} \label{}\hypertarget{}{} Write $Cat(\mathcal{X})$ for the 2-category of \emph{[[internal categories]]} in $\mathcal{X}$, precisely: the 2-category of [[2-congruences]] and internal [[anafunctors]] between them (see \href{http://ncatlab.org/nlab/show/2-congruence#2CategoryOf2Congruences}{here}). \end{defn} \begin{theorem} \label{2SheavesAsInternalCategories}\hypertarget{2SheavesAsInternalCategories}{} For $\mathcal{X}$ a 2-topos, there is an [[equivalence of 2-categories]] \begin{displaymath} \mathcal{X} \simeq Cat(\mathcal{X}) \,. \end{displaymath} If $\mathcal{X}$ is $(2,1)$-localic, with a [[(2,1)-site]] of definition $C$, then there is already an equivalence \begin{displaymath} \mathcal{X} \simeq Cat(Sh_{(2,1)}(C)) \end{displaymath} with the 2-category of categories internal to the underlying [[(2,1)-topos]]. If $\mathcal{X}$ is $1$-localic, with 1-site of definition, then there is even already an equivalence \begin{displaymath} \mathcal{X} \simeq Cat(Sh(C)) \end{displaymath} with the internal categories in the underlying [[sheaf topos]]. \end{theorem} \begin{proof} By the [[2-Giraud theorem]], $\mathcal{X}$ is an [[exact 2-category]]. With this, the first statement is \href{http://ncatlab.org/nlab/show/2-congruence#nCongExidempotent}{this theorem} at \emph{[[2-congruence]]}. By the discussion at [[n-localic 2-topos]], a 2-sheaf 2-topos has \emph{[[core in a 2-category|enough groupoids]]} precisely if it has a [[(2,1)-site]] of definition, and has \emph{[[core in a 2-category|enough discretes]]} precisely if it has a 1-site of definition. With this the second and third statement is \href{http://ncatlab.org/nlab/show/2-congruence#nCongOnGroupoidsAndDiscretes}{this theorem} at \emph{[[2-congruence]]}. \end{proof} \begin{remark} \label{}\hypertarget{}{} The noteworthy point about theorem \ref{2SheavesAsInternalCategories} is that for an ambient context which is a $(2,1)$-localic [[(2,1)-topos]], the straightforward morphisms of [[internal categories]], hence the notion of [[internal functors]], needs no further [[localization]]. This is in stark contrast to the situation for an ambient [[1-category]]. The generalization of this phenomenon is discussed at \emph{[[category object in an (∞,1)-category]]}. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{the_archetypical_2topos}{}\subsubsection*{{The archetypical 2-topos}}\label{the_archetypical_2topos} The archetypical 2-topos is [[Cat]]. This plays the role for 2-toposes as [[Set]] does for [[1-toposes]]. \hypertarget{internal_categories_in_a_topos}{}\subsubsection*{{Internal categories in a $(2,1)$-topos}}\label{internal_categories_in_a_topos} Given any [[(2,1)-topos]] $\mathcal{X}$, the [[2-category]] $Cat(\mathcal{X})$ of [[internal (infinity,1)-category|internal categories]] in $\mathcal{X}$ ought to be a 2-topos. But it seems that at the moment there is no proof of this in the literature. For literature on [[internal categories]] in [[1-toposes]] see at \emph{[[2-sheaf]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[(0,1)-topos]] \item [[topos]], [[(∞,1)-topos]], [[(n,1)-topos]] \item \textbf{2-topos}, [[(∞,2)-topos]] \begin{itemize}% \item [[elementary theory of the 2-category of categories]] ([[ETCC]]) \item [[n-localic 2-topos]] \end{itemize} \item [[n-topos]] \item [[(∞,n)-topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} An introduction is in \begin{itemize}% \item [[Mike Shulman]], \emph{[[michaelshulman:What is a 2-topos]]?} \end{itemize} Early developments include \begin{itemize}% \item [[Ross Street]], \emph{Two dimensional sheaf theory}, J. Pure and Appl. Algebra 24 (1982) 2Opp. \end{itemize} A detailed discussion from the point of view of [[internal logic]] is at \begin{itemize}% \item [[Mike Shulman]], \emph{[[michaelshulman:2-categorical logic]]} \end{itemize} Discussion of the 2-categorical [[Giraud theorem]] for [[2-sheaf]] 2-toposes is in \begin{itemize}% \item [[Ross Street]], \emph{[[zoranskoda:Characterization of Bicategories of Stacks]]} Category theory (Gummersbach 1981) LNM 962, 1982, MR0682967 (84d:18006) \item [[Mike Shulman]], \emph{[[michaelshulman:2-Giraud theorem]]} \end{itemize} Discussion of the [[elementary topos]]-analog of 2-toposes is in \begin{itemize}% \item [[Mark Weber]], \emph{Yoneda structures from 2-toposes} (\href{https://sites.google.com/site/markwebersmaths/home/yoneda-structures-from-2-toposes}{pdf}) \end{itemize} A notion of ``flat 2-functor'' (cf [[Diaconescu's theorem]]) perhaps relevant to the ``points'' of 2-toposes is in \begin{itemize}% \item M.E. Descotte, E.J. Dubuc, M. Szyld, \emph{On the notion of flat 2-functors}, arXiv:\href{https://arxiv.org/abs/1610.09429}{1610.09429} \end{itemize} [[!redirects 2-toposes]] [[!redirects 2-topoi]] [[!redirects (2,1)-topos]] [[!redirects (2,1)-toposes]] [[!redirects Grothendieck 2-topos]] [[!redirects Grothendieck 2-toposes]] \end{document}