\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2-vector space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{content}{}\section*{{Content}}\label{content} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{what_is_a_vector_space}{What is a vector space?}\dotfill \pageref*{what_is_a_vector_space} \linebreak \noindent\hyperlink{KV2VectorSpace}{Kapranov--Voevodsky $2$-vector spaces}\dotfill \pageref*{KV2VectorSpace} \linebreak \noindent\hyperlink{BaezCrans2VectorSpaces}{Baez--Crans $2$-vector spaces}\dotfill \pageref*{BaezCrans2VectorSpaces} \linebreak \noindent\hyperlink{AbstractApproach}{$2$-modules and $2$-linear maps as algebras and bimodules}\dotfill \pageref*{AbstractApproach} \linebreak \noindent\hyperlink{enriched_categories}{$\Vect$-enriched categories}\dotfill \pageref*{enriched_categories} \linebreak \noindent\hyperlink{enriched_categories_2}{$Ch(Vect)$-enriched categories}\dotfill \pageref*{enriched_categories_2} \linebreak \noindent\hyperlink{revisiting_kapranovvoevodsky_2vector_spaces}{Revisiting Kapranov--Voevodsky 2-vector spaces}\dotfill \pageref*{revisiting_kapranovvoevodsky_2vector_spaces} \linebreak \noindent\hyperlink{elgueta_vector_spaces}{Elgueta $2$-vector spaces}\dotfill \pageref*{elgueta_vector_spaces} \linebreak \noindent\hyperlink{infinitedimensional_kv_2vector_spaces}{Infinite-dimensional K-V 2-vector spaces}\dotfill \pageref*{infinitedimensional_kv_2vector_spaces} \linebreak \noindent\hyperlink{using_a_modular_tensor_category}{Using a modular tensor category}\dotfill \pageref*{using_a_modular_tensor_category} \linebreak \noindent\hyperlink{2modules_as_modules_over_a_2ring}{2-Modules as modules over a 2-ring}\dotfill \pageref*{2modules_as_modules_over_a_2ring} \linebreak \noindent\hyperlink{remark_on_the_different_notions_of_vector_spaces}{Remark on the different notions of $2$-vector spaces}\dotfill \pageref*{remark_on_the_different_notions_of_vector_spaces} \linebreak \noindent\hyperlink{hilbert_spaces}{$2$-Hilbert spaces}\dotfill \pageref*{hilbert_spaces} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{tannaka_duality}{Tannaka duality}\dotfill \pageref*{tannaka_duality} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of a \emph{$2$-vector space} is supposed to be a [[vertical categorification|categorification]] of the concept of a [[vector space]]. As usual in the game of `categorification', this requires us to think deeply about what an ordinary vector space really is, and then attempt to categorify that idea. \hypertarget{what_is_a_vector_space}{}\subsubsection*{{What is a vector space?}}\label{what_is_a_vector_space} There are at least three distinct conceptual roles which vectors and vector spaces play in mathematics: \begin{enumerate}% \item A vector is a \emph{column of numbers}. This is the way vector spaces appear in quantum mechanics, sections of line bundles, elementary linear algebra, etc. \item A vector is a \emph{direction in space}. Vector spaces of this kind are often the infinitesimal data of some global structure, such as tangent spaces to manifolds, Lie algebras of Lie groups, and so on. \item A vector is an element of a [[module]] over the base [[ring]]/[[field]]. \end{enumerate} The first of these may be thought of as motivating the notion of \begin{itemize}% \item \hyperlink{KV2VectorSpace}{Kapranov-Voevodsky $2$-vector space} \end{itemize} the second the notion of \begin{itemize}% \item \hyperlink{BaezCrans2VectorSpaces}{Baez-Crans $2$-vector spaces} \end{itemize} the third the notion of \begin{itemize}% \item \hyperlink{AbstractApproach}{$2$-Modules}. \end{itemize} \hypertarget{KV2VectorSpace}{}\subsubsection*{{Kapranov--Voevodsky $2$-vector spaces}}\label{KV2VectorSpace} These were introduced in: \begin{itemize}% \item M. Kapranov and V. Voevodsky, \emph{$2$-categories and Zamolodchikov tetrahedra equations} in \emph{Algebraic groups and their generalization: quantum and infinite-dimensional methods, University Park, PA (1991) (eds: W. J. Haboush and B. J. Parshall), Proc. Sympos. Pure Math. 56 (Amer. Math. Soc., Providencem RIm 1994), pp. 177-259} \end{itemize} The idea here is that just as a vector space can be regarded as a [[module]] over the [[ground field]] $k$, a $2$-vector space $W$ should be a [[category]] which is a [[monoidal category module]] with some nice properties (such as being an abelian category) over a suitable [[monoidal category]] $V$ which plays the role of the categorified ground field. There is then an obvious [[bicategory]] of such module categories. In fact, Kapranov and Voevodsky defined a \textbf{Kapranov--Voevodsky $2$-vector space} as an abelian $\Vect$-module category equivalent to $\Vect^n$ for some $n$. While this definition makes a lot of sense it does not give an abstract characterization of 2-vector spaces. That is, it is hardly different to simply defining a 2-vector space as a category equivalent to $Vect^n$. Because Kapranov--Voevodsky $2$-vector spaces categorify the idea of a vector space as a `state-space' of a system, they are the notion of $2$-vector space which feature on the right hand side of extended TQFTs (functors from higher [[cobordism]] categories to higher vector spaces). An example of a Kapranov--Voevodsky $2$-vector space is $Rep(G)$, the category of [[representations]] of a finite group $G$. \hypertarget{BaezCrans2VectorSpaces}{}\subsubsection*{{Baez--Crans $2$-vector spaces}}\label{BaezCrans2VectorSpaces} These were explicitly described in: \begin{itemize}% \item John C. Baez and Alissa S. Crans, \emph{Higher-Dimensional Algebra VI: Lie $2$-Algebras} (\href{http://www.tac.mta.ca/tac/volumes/12/15/12-15abs.html}{tac}, \href{http://math.ucr.edu/home/baez/hda6.pdf}{pdf}). \end{itemize} A \textbf{Baez--Crans $2$-vector space} is defined as a [[internal category|category internal]] to [[Vect]]. They categorify the idea of a vector as a `direction in space', and crop up when considering the \emph{infinitesimal directions} of a structure, such as in higher [[Lie theory]]. In fact, (following for instance from an extension of the [[Dold-Kan correspondence|Dold-Kan theorem]] by Brown and Higgins), [[strict omega-category|strict omega-categories]] internal to $\Vect$ are equivalent to chain complexes in non-negative degree and can be regarded as strict $Disc(k)$-$\infty$-modules. This allows to conceive much of [[homological algebra]] and many of the structures appearing in higher [[Lie theory]] -- for instance the definition of $L_\infty$-[[L-infinity-algebra|algebras]], as being about $\infty$-vector spaces. Regarding a chain complex as an $\infty$-vector space is useful conceptually for understanding the meaning of some constructions on chain complexes, while of course chain complexes themselves are well suited for direct computation with the $\infty$-vector spaces which they are equivalent to. (See also the remark about different notions of 2-vector spaces further below.) They were also independently introduced and studied by [[Magnus Forrester-Barker]] in his thesis (\hyperlink{Forrester-Barker}{Forrester-Barker 2004}). \hypertarget{AbstractApproach}{}\subsection*{{$2$-modules and $2$-linear maps as algebras and bimodules}}\label{AbstractApproach} It is possible to conceive of 2-vector spaces of the Kapranov--Voevodsky and Baez--Crans type from a single unified perspective. Namely, by regarding the [[ground field]] itself as a [[discrete category]] we can think of it as a [[monoidal category]]. A $Disc(k)$-module category is a category whose space of objects and space of morphisms are both $k$-modules -- ordinary vector spaces! -- such that all structure morphisms (source, target, identity, composition) respect the $k$-action -- hence are linear maps. These are categories internal to $\Vect_k$ which are equivalent to chain complexes of vector spaces concentrated in degree 0 and 1. In other words, a Baez--Crans $2$-vector space can be thought of as a Kapranov--Voevodsky $2$-vector space, if one `categorifies' the ground field by simply regarding it as a discrete monoidal category. For $V$ a general symmetric [[closed monoidal category]] the full bicategory of all [[monoidal category modules]] over $V$ is in general hard to get under control, but what is more tractable is the sub-bicategory which may be addressed as the bicategory of $V$-modules \emph{with basis} namely the category $V-Mod$ in the sense of [[enriched category theory]] with \begin{itemize}% \item objects are categories $C$ [[enriched category|enriched over]] $V$, to be thought of as placeholders for their categories of [[modules]], $Mod_C := [C,V]$ \item morphisms $C \to D$ are [[bimodules]] $C^{op}\otimes D \to V$; \item $2$-morphisms are natural transformations. \end{itemize} Notice that all $V$-categories $Mod_C$ of modules over a $V$-category $C$ are naturally [[copower|tensored]] over $V$ and hence are [[monoidal category modules]] over $V$. In analogy to how a vector space $W$ (a $k$-module) is equipped with a basis by finding a set $S$ such that $W \simeq [S,k]$, we can think of a general [[monoidal category module]] $W$ over $V$ to be equipped with a basis by providing an [[equivalence]] $W \simeq [C,V]$, for some $V$-category $C$. In this sense $V-Mod$ is the category of $V$ 2-vector spaces with basis. All of the examples on this page are special cases of this one. \hypertarget{enriched_categories}{}\subsubsection*{{$\Vect$-enriched categories}}\label{enriched_categories} According to the above a $Vect$-[[enriched category]] $C$ can be regarded as a basis for the $Vect$-module $Mod_C = [C,Vect]$. A $Vect$-enriched category is just an [[algebroid]]. If it has a single object it is an [[algebra]] and $Mod_C$ is the familiar category of modules over an algebra. Notice that, by the very definition of [[Morita equivalence]], two algebras (algebroids) have equivalent module categories, and hence can be regarded as different bases for the same $\Vect$ $2$-vector space, iff they are Morita equivalent. $Vect$-enriched categories as models for 2-vector spaces appear in \begin{itemize}% \item Jacob Lurie, \emph{On the classification of topological field theories} (\href{http://www.math.harvard.edu/~lurie/papers/cobordism.pdf}{pdf}) (see example 1.2.4) \item B. To\"e{}n, G. Vezzosi, \emph{A note on Chern character, loop spaces and derived algebraic geometry}, (\href{http://arxiv.org/abs/0804.1274}{arXiv}, p. 6) \end{itemize} $2$-vector spaces in the sub-bicategory of algebras ($Vect$-enriched categories with a single object), bimodules and intertwiners are discussed in \begin{itemize}% \item U. Schreiber, \emph{AQFT from $n$-functorial QFT} (\href{http://arxiv.org/abs/0806.1079}{arXiv}) (appendix A) \end{itemize} and \begin{itemize}% \item U. Schreiber and K. Waldorf, \emph{Connections on non-abelian gerbes and their holonomy} (\href{http://arxiv.org/abs/0808.1923}{arXiv}) \end{itemize} Some blog discussion of this point is at \href{http://golem.ph.utexas.edu/category/2007/11/2vectors_in_trondheim.html}{2-Vectors in Trodheim}. \hypertarget{enriched_categories_2}{}\subsubsection*{{$Ch(Vect)$-enriched categories}}\label{enriched_categories_2} More generally one can replace vector spaces by complexes of vector spaces and consider $Ch(Vect)\Mod$ as a model for the $2$-category of $2$-vector spaces (with basis): its objects are [[dg-category|dg-categories]]. It is argued in \begin{itemize}% \item B. To\"e{}n, G. Vezzosi, \emph{A note on Chern character, loop spaces and derived algebraic geometry}, (\href{http://arxiv.org/abs/0804.1274}{arXiv}, p. 6) \end{itemize} that the generalization from $Vect\Mod$ to $Ch(Vect)\Mod$ is necessary to have a good notion of higher sheaves of sections of 2-vector bundles, i.e. of higher coherent sheaves. \hypertarget{revisiting_kapranovvoevodsky_2vector_spaces}{}\subsubsection*{{Revisiting Kapranov--Voevodsky 2-vector spaces}}\label{revisiting_kapranovvoevodsky_2vector_spaces} Upon further restriction of $\Vect\Mod$ to 2-vector spaces whose basis is a \emph{discrete category}, namely a set $S$ (or the $Vect$-enriched category over $S$ which has just the [[ground field]] object sitting over each element of $S$) one arrives at $Vect$-modules of the form \begin{displaymath} [S, Vect] = Mod_{k^n} \simeq (Vect)^n \end{displaymath} (where $k^n$ denotes the algebra of diagonal $n\times n$-matrices). These are precisely Kapranov--Voevodsky $2$-vector spaces. \hypertarget{elgueta_vector_spaces}{}\subsubsection*{{Elgueta $2$-vector spaces}}\label{elgueta_vector_spaces} Another notion of 2-vector space which also includes Kaparanov--Voevodsky as particular instances is given in \begin{itemize}% \item Josep Elgueta, \emph{Generalized 2-vector spaces and general linear 2-groups} (\href{http://arxiv.org/abs/math/0606472}{arXiv}) \end{itemize} The idea is to categorify the construction of a vector space as the space of finite linear combinations of elements in any set $S$. Instead of $S$, we start now with any category $C$, and take first the free $k$-linear category generated by $C$, and next the additive completion of this. Kapranov--Voevodsky $2$-vector spaces are recovered when $C$ is discrete. In some cases this gives nonabelian and even non-[[Karoubian category|Karoubian]] (i.e., nonidempotent complete) categories. This is the case, for instance, when we take as $C$ the one-object category defined by the additive monoid of natural numbers. The 2-vector space this category generates can be identified with the category of free $k[T]$-modules, which is nonKaroubian. \hypertarget{infinitedimensional_kv_2vector_spaces}{}\subsubsection*{{Infinite-dimensional K-V 2-vector spaces}}\label{infinitedimensional_kv_2vector_spaces} We can regard the objects of the $n$-dimensional Kapranov--Voevodsky $2$-vector space $Vect^n$ -- which are $n$-tuples of vector spaces -- as vector bundles over the finite set of $n$ elements. This has an obvious generalization to vector bundles over any topological space -- in terms of modules these are the finitely generated projective modules of the algebra of continuous functions on this space. So categories of vector bundles can be regarded as infinite-dimensional 2-vector spaces. For the case that the underlying topological space is a \emph{measure space} such infinite dimensional K-V 2-vector spaces have been studied in \begin{itemize}% \item John C. Baez, Aristide Baratin, Laurent Freidel, Derek K. Wise, \emph{Infinite-Dimensional Representations of 2-Groups} (\href{http://arxiv.org/abs/0812.4969}{arXiv}) \end{itemize} \hypertarget{using_a_modular_tensor_category}{}\subsubsection*{{Using a modular tensor category}}\label{using_a_modular_tensor_category} The relevance of module categories as models for 2-vector spaces was apparently first realized in the context of [[conformal field theory]], where the monoidal category $V$ in question is a [[modular tensor category]]. A result by Victor Ostrik showed that \emph{all} $V$-module categories are equivalent to $Mod_A$ for $A$ some one-object $V$-enriched category (i.e., an algebra internal to $V$) in \begin{itemize}% \item V. Ostrik, \emph{Module Categories, weak Hopf Algebras and Modular Invariants} (\href{http://arxiv.org/abs/math.QA/0111139}{arXiv}, \href{http://golem.ph.utexas.edu/string/archives/000717.html}{blog}) \end{itemize} \hypertarget{2modules_as_modules_over_a_2ring}{}\subsection*{{2-Modules as modules over a 2-ring}}\label{2modules_as_modules_over_a_2ring} One can go further and derive the identification of 2-modules and 2-linear maps with algebras and bimodules from a more fundamental notion of modules over [[2-rings]]. For the moment see there at \emph{\href{2-rig#CompatiblyMonoidalPresentableCategories}{2-ring -- Compatibly monoidal presentable categories}} for more details. \hypertarget{remark_on_the_different_notions_of_vector_spaces}{}\subsection*{{Remark on the different notions of $2$-vector spaces}}\label{remark_on_the_different_notions_of_vector_spaces} As the above list shows, there are 2-vector spaces of very different kind. There is not \emph{the} notion of 2-vector space which is the universal right answer. Different notions of vector spaces are applicable and useful in different situations. This can be regarded as nothing but a more pronounced incarnation of the fact that already ordinary vector space appear in different flavors which are useful in different situations (real vector spaces, complex vector spaces, vector spaces over a [[finite field]], etc.) For instance $Disc(k)$-module categories are crucial for higher [[Lie theory]] but 2-bundles with fibers $Disc(k)$-module categories are comparatively boring as far as general 2-bundles go, as they are essentially complexes of ordinary vector bundles. See \begin{itemize}% \item [[Nils. A. Baas]], Marcel B\"o{}kstedt, Tore August Kro, \emph{Two-Categorical Bundles and Their Classifying Spaces}, J. K-Theory, 10 (2012) 299 - 369, with a preliminary version at (\href{http://arxiv.org/abs/math/0612549}{arXiv}) \end{itemize} \hypertarget{hilbert_spaces}{}\subsection*{{$2$-Hilbert spaces}}\label{hilbert_spaces} 2-vector spaces have to a large extent been motivated by and applied in (2-dimensional) [[quantum field theory]]. In that context it is usually not the concept of a plain vector space which needs to be categorified, but that of a Hilbert space. 2-Hilbert spaces as a $\Hilb$-[[enriched category|enriched categories]] with some extra properties were discribed in \begin{itemize}% \item John Baez, \emph{Higher-Dimensional Algebra II: 2-Hilbert Spaces} (\href{http://arxiv.org/abs/q-alg/9609018}{arXiv}) . \end{itemize} In applications one often assumes these 2-Hilbert spaces to be [[semisimple algebra|semisimple]] in which case such a 2-Hilbert space is a Kapranov--Voevodsky $2$-vector space equipped with extra structure. A review of these ideas of 2-Hilbert spaces as well as applications of 2-Hilbert spaces to finite group representation theory are in \begin{itemize}% \item Bruce Bartlett, \emph{On unitary 2-representations of finite groups and topological quantum field theory} (\href{http://arxiv.org/abs/0901.3975}{arXiv}) \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{tannaka_duality}{}\subsubsection*{{Tannaka duality}}\label{tannaka_duality} [[!include structure on algebras and their module categories - table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[vector space]] \item \textbf{2-vector space}, [[2-representation]] \begin{itemize}% \item [[2-ring]] \item [[2Mod]] \item [[2-vector bundle]] \item \emph{[[TwoVect]]} is a Mathematica software package for computer algebra with 2-vector spaces \end{itemize} \item [[n-vector space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Magnus Forrester-Barker]], \emph{Representations of Crossed Modules and $Cat^1$-Groups}, PhD thesis U. Wales Bangor (2004) (\href{http://www.maths.bangor.ac.uk/research/ftp/theses/forrester-barker.pdf}{pdf}) \end{itemize} A systematic definition of 2-modules over [[2-rings]] (see there for more) is in \begin{itemize}% \item [[Alexandru Chirvasitu]], [[Theo Johnson-Freyd]], \emph{The fundamental pro-groupoid of an affine 2-scheme} (\href{http://arxiv.org/abs/1105.3104}{arXiv:1105.3104}) \end{itemize} See also at \begin{itemize}% \item \emph{[[geometry of physics]]: [[geometry of physics - modules]]} \end{itemize} the section on 2-modules. [[!redirects 2-vector spaces]] [[!redirects 2-module]] [[!redirects 2-modules]] \end{document}