\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{2d TQFT} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{classification}{Classification}\dotfill \pageref*{classification} \linebreak \noindent\hyperlink{FiltrationOfModuliSpace}{Filtrations of the moduli space of surfaces}\dotfill \pageref*{FiltrationOfModuliSpace} \linebreak \noindent\hyperlink{monoid_objects}{$A_\infty$-monoid objects}\dotfill \pageref*{monoid_objects} \linebreak \noindent\hyperlink{closed_2d_quantum_field_theory}{Closed 2d quantum field theory}\dotfill \pageref*{closed_2d_quantum_field_theory} \linebreak \noindent\hyperlink{compactified_moduli_spaces_of_riemann_surfaces}{Compactified moduli spaces of Riemann surfaces}\dotfill \pageref*{compactified_moduli_spaces_of_riemann_surfaces} \linebreak \noindent\hyperlink{fenchelnielson_coordinates_on_moduli_space}{Fenchel-Nielson coordinates on moduli space}\dotfill \pageref*{fenchelnielson_coordinates_on_moduli_space} \linebreak \noindent\hyperlink{openclosed_case}{Open-closed case}\dotfill \pageref*{openclosed_case} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{global}{Global}\dotfill \pageref*{global} \linebreak \noindent\hyperlink{local}{Local}\dotfill \pageref*{local} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{2-dimensional TQFT} is a [[TQFT|topological quantum field theory]] on [[cobordisms]] of [[dimension]] 2. \hypertarget{classification}{}\subsection*{{Classification}}\label{classification} When formulated as an (only) ``globally'' as 1-[[functors]] on a 1-[[category of cobordisms]] (see at \emph{[[FQFT]]} for more), then 2d TQFTs have a comparatively simple classification: the [[bulk field theory]] is determined by a commutative [[Frobenius algebra]] structure on the [[finite dimensional vector space]] assigned to the circle (\hyperlink{Abrams96}{Abrams 96}). However, such global 2d TQFTs with [[coefficients]] in [[Vect]] do not capture the 2d TQFTs of most interest in [[quantum field theory]], which instead are ``[[cohomological quantum field theories]]'' (\hyperlink{Witten91}{Witten 91}) such as the [[topological string]] [[A-model]] and [[B-model]] that participate in [[homological mirror symmetry]]. These richer 2d TQFTs are instead local TQFTs in the sense of \emph{[[extended TQFT]]}, i.e. they are [[(∞,2)-functors]] on a suitable [[(∞,2)-category of cobordisms]] (see at \emph{[[FQFT]]} for more), typically on ``non-compact'' 2-d cobordisms, meaning on those that have non-vanishing outgoing bounary. As such they are now classified by [[Calabi-Yau objects]] in an [[symmetric monoidal (infinity,2)-category]] (\hyperlink{Lurie09}{Lurie 09, section 4.2}). For coefficients in the [[(∞,2)-category]] of [[(∞,n)-vector space|(∞,2)-vector space]] (i.e. [[A-∞ algebras]] with [[(∞,1)-bimodules]] between them in the [[(∞,1)-category of chain complexes]]), these theories had been introduced under the name ``[[TCFT]]'' in (\hyperlink{Getzler92}{Getzler 92}, \hyperlink{Segal99}{Segal 99}) following ideas of [[Maxim Kontsevich]], and have been classified in (\hyperlink{Costello04}{Costello 04}), see (\hyperlink{Lurie09}{Lurie 09, theorem 4.2.11, theorem 4.2.14}). [[!include 2d TQFT -- table]] \hypertarget{FiltrationOfModuliSpace}{}\subsection*{{Filtrations of the moduli space of surfaces}}\label{FiltrationOfModuliSpace} The following study of the behaviour of 2-dimensional TQFTs in terms of the [[topology]] of the [[moduli spaces]] of marked hyperbolic surfaces is due to [[Ezra Getzler]]. It provides a powerful way to read off various classification results for 2d QFTs from the [[homotopy groups]] of the corresponding [[modular operad]]. \hypertarget{monoid_objects}{}\subsubsection*{{$A_\infty$-monoid objects}}\label{monoid_objects} Let $Core$([[FinSet]]) be the [[core]] of the [[category]] of finite sets. Under union of sets this is a [[symmetric monoidal category]]. Then for $C$ any [[monoidal category]], a [[symmetric monoidal functor]] \begin{displaymath} \Phi : Core(FinSet) \to C \end{displaymath} is a commutative [[monoid]] in $C$. Let now $C$ be a [[category with weak equivalences]], then we can speak of a lax symmetric opmonoidal functor \begin{displaymath} \Phi : Core(FinSet) \to C \end{displaymath} if the structure maps \begin{displaymath} \Phi(n+m) \stackrel{\simeq}{\to} \Phi(m) \otimes \Phi(n) \end{displaymath} \begin{displaymath} \phi(m) \stackrel{\simeq}{\to} \Phi(1)^{\otimes m} \end{displaymath} are weak equivalences. Segal called these ``$\Delta$-objects''. Since [[Carlos Simpson]] they are called [[Segal object]]s. There is also [[Jim Stasheff]]`s notion of an [[A-infinity algebra]], given in terms of [[associahedra]] $K_n$, which are $(n-2)$-dimensional [[polytope]]s. There is naturally a filtration on these guys with \begin{displaymath} F_0 K_n \subset F_1 K_n \subset \cdots \,, \end{displaymath} where $F_0 K_n$ is the set of vertices, $F_1 K_n$ the set of edges, etc. The collection \begin{displaymath} \{ S_\bullet(K_n) \} \end{displaymath} of simplicial realizations of the $K_n$ form an [[sSet]]-[[operad]] $P$. For $X$ a [[simplicial category]] that is symmetric monoidal, a $P$-[[algebra over an operad]] $X$ in $C$ is an $A_\infty$-monoid object \begin{displaymath} S_\bullet(K_n) \to C_\bullet(X^{\otimes n}, X) \end{displaymath} [[Saunders MacLane|MacLane]]`s [[coherence theorem]] says or uses that if $C$ is an [[n-category]], we may replace $K_m$ here by the $n$-filtration $F_n K_m$. \hypertarget{closed_2d_quantum_field_theory}{}\subsubsection*{{Closed 2d quantum field theory}}\label{closed_2d_quantum_field_theory} \hypertarget{compactified_moduli_spaces_of_riemann_surfaces}{}\paragraph*{{Compactified moduli spaces of Riemann surfaces}}\label{compactified_moduli_spaces_of_riemann_surfaces} Let \begin{displaymath} (\Sigma, (z_1, \cdots, z_n)) \end{displaymath} be a [[compact space|compact]] [[orientation|oriented]] surface with $n$ distinct marked points. Write \begin{displaymath} \mathcal{H}(\Sigma, (z_1, \cdots, z_n)) \end{displaymath} for the [[moduli space]] of [[hyperbolic metric]]s with cusps at the $(z_i)$. We have \begin{displaymath} M(\Sigma, \vec z) = \mathcal{H}(\Sigma, \vec z)/Diff_+(\Sigma, \vec z) \end{displaymath} and \begin{displaymath} M_{g,n} = \Tau_{g,n} / \Gamma^ng \,, \end{displaymath} where $\Tau_{g,n}$ is the [[Teichmüller space]] and $\Gamma$ the [[mapping class group]]. Here we can assume that the [[Euler characteristic]] $\chi(\Sigma without \{z_i\}) \lt 0$ because otherwise this moduli space is empty. \hypertarget{fenchelnielson_coordinates_on_moduli_space}{}\paragraph*{{Fenchel-Nielson coordinates on moduli space}}\label{fenchelnielson_coordinates_on_moduli_space} We want to parameterize Teichm\"u{}ller space by cutting surfaces into pieces with geodesic boundaries and [[Euler characteristic]] $\xi = -1$. These building blocks (of hyperbolic 2d geometry) are precisely \begin{itemize}% \item the 3-holed sphere; \item the 2-holed cusp; \item the 1-holed 2-cusp; \item the 3-cusp \end{itemize} Each surface of [[genus]] $g$ with $n$ marked points will have \begin{itemize}% \item $2g - 2 + n$ generalized pants; \item $3 g - 3 + n$ closed curves. \end{itemize} The boundary lengths $\ell_i \in \mathbb{R}_+$ and twists $t_i \in \mathbb{R}$ of these pieces for \begin{displaymath} 1 \leq i \leq 3g-3+n \end{displaymath} constitute the [[Fenchel-Nielsen coordinates]] on [[Teichmüller space]] $\Tau$. Also use $\theta_i := t_i/\ell_i \in \mathbb{R}/\mathbb{Z}$ This constitutes is a real analytic [[atlas]] of Teichm\"u{}ller space. On $M$ this reduces to coordinates $t_i \in \mathbb{R}/{\ell_i \mathbb{Z}}$, and these constitute a real analytic atlas of moduli space. Allow the lengths $\ell_i$ to go to 0, but keep the angles $\theta_i$. The resulting space is a real analytic [[manifold with corners]] $\hat \Tau$ (due to [[Bill Harvey]]) and this constitutes a Borel-Serre [[bordification]] of $\Tau$. The [[mapping class group]] $\Gamma$ still acts on $\hat \Tau$ and the quotient $\hat M$ is an [[orbifold]] with corners, inside which still sits our moduli space $M$. Kimura-Stasheff-Voronov: add a choice of directions at each nodal point in $\Sigma$. This removes all automorphisms and hence we no longer have to deal with an [[orbifold]]. This yields the [[classifying stack]] $\mathcal{P}_{g,n}$ for $\Gamma_{g,n}$ Then the collection \begin{displaymath} \{ \mathcal{P}_{g,n} \} \end{displaymath} is a [[modular operad]]: the operad that describes gluing of marked surfaces at marked points together with the informaiton on how to glue marked points of a single surface to each other. A 2-dimensional closed [[TQFT]] is an [[algebra over an operad]] over this in a simplicial category, in the above sense. This involves either the [[de Rham complex]] on $\mathcal{P}_{g,n}$ or $S_\bullet(\mathcal{P}_{g,n})$. Let \begin{displaymath} F_k \mathcal{P}_{g,n} := \left\{ [\Sigma] | ... \right\} \end{displaymath} where $\Sigma$ has $\geq 2g-2+n-k$ spheres as components (after cutting along zero-length closed curves). So for instance \begin{itemize}% \item $F_0 \mathcal{P}_{g,n}$ is the pants-decomposition; \item $F_1 \mathcal{P}_{g,n}$ is decompositions into pants and one piece being the result of either gluing two pants to each other or of gluing two circles of a single pant to each other. This $F_1 ..$ is a connected space, due to a theorem by Hatcher-Thurston. \textbf{Notice} This is equivalent to the familiar statement that a closed 2d TFT is a commutative [[Frobenius algebra]]. \item $F_2 \mathcal{P}_{g,n}$ is the decomposition into pieces as before together with one two-holed torus or one five-holed sphere. This space has the space [[fundamental group]] as $\mathcal{P}_{g,n}$. This is equivalent to the theorem by Moore and Seiberg about categorified 2-d TFT. \end{itemize} \begin{utheorem} ([[Ezra Getzler]]) The inclusion \begin{displaymath} F_k \mathcal{P}_{g,n} \hookrightarrow \mathcal{P}_{g,n} \end{displaymath} is $k$-[[connected]]. Here a map $X\to Y$ is $k$-connected if \begin{itemize}% \item $\pi_0(X) \to \pi_0(Y)$ is surjective; \item $\pi_i(X,x) \to \pi_i(Y,f(x))$ is a bijection for $i \lt k$ and surjective $i = k$. \end{itemize} This means precisely that the [[mapping cone]] is $k$-connected. \end{utheorem} \begin{proof} Use the cellular decomposition of moduli space $\mathcal{M}_{g,1}$ following Mumford, Thurston, Harer, Woeditch-Epstein, Penner. \end{proof} Some other versions of this: \begin{displaymath} F_k \Tau_{g,n} \to \Tau_{g,n} \end{displaymath} is $k$-connected. One can also use [[Deligne-Mumford compactification]]s \begin{displaymath} F_k \bar \mathcal{M}_{g,n} \to \bar \mathcal{M}_{g,n} \end{displaymath} and this is also $k$-connected. \hypertarget{openclosed_case}{}\subsubsection*{{Open-closed case}}\label{openclosed_case} \ldots{} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[sewing constraint]] \begin{itemize}% \item [[Cardy condition]] \end{itemize} \item [[TQFT]] \begin{itemize}% \item \textbf{2d TQFT} \begin{itemize}% \item [[2d Chern-Simons theory]] \item [[TCFT]] \begin{itemize}% \item [[A-model]], [[B-model]] \end{itemize} \item [[Landau-Ginzburg model]] \item [[Levin-Wen model]] \end{itemize} \item [[3d TQFT]] \item [[4d TQFT]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{global}{}\subsubsection*{{Global}}\label{global} The [[folklore]] result that global closed 2d TQFTs with coefficients in [[Vect]] are equivalent to commutative [[Frobenius algebra]] structures is proven rigorously in \begin{itemize}% \item [[Lowell Abrams]], \emph{Two-dimensional topological quantum eld theories and Frobenius algebras}, J. Knot Theory Ramications 5 (1996) (\href{http://home.gwu.edu/~labrams/docs/tqft.ps}{ps}) \end{itemize} The classification result for open-closed 2d TQFTs was famously announced and sketched in \begin{itemize}% \item [[Greg Moore]], [[Graeme Segal]], \emph{Lectures on branes, K-theory and RR charges, Clay Math Institute Lecture Notes (2002),} (\href{http://www.physics.rutgers.edu/~gmoore/clay1/clay1.html}{web}) \item [[Calin Lazaroiu]], \emph{On the structure of open-closed topological field theory in two dimensions}, Nuclear Phys. B 603(3), 497--530 (2001), (\href{http://arxiv.org/abs/hep-th/0010269}{arXiv:hep-th/0010269}) \end{itemize} A standard textbook is \begin{itemize}% \item [[Joachim Kock]], \emph{Frobenius algebras and 2D topological quantum field theory} (\href{http://mat.uab.cat/~kock/TQFT.html}{web}, \href{http://mat.uab.es/~kock/TQFT/FS.pdf}{course notes pdf}) \end{itemize} A picture-rich description of what's going on is in \begin{itemize}% \item [[Aaron Lauda]], [[Hendryk Pfeiffer]], \emph{Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras} , Topology Appl. 155 (2008) 623-666. (\href{http://arxiv.org/abs/math.AT/0510664}{arXiv:math.AT/0510664}) \end{itemize} \hypertarget{local}{}\subsubsection*{{Local}}\label{local} The local ([[extended TQFT]]) version of 2d TQFT which captures the [[topological string]] was mathematically introduced under the name ``[[TCFT]]''. The concept is essentially a formalization of what used to be called [[cohomological field theory]] in \begin{itemize}% \item [[Edward Witten]], \emph{Introduction to cohomological field theory}, InternationalJournal of Modern Physics A, Vol. 6,No 6 (1991) 2775-2792 ([[WittenCQFT.pdf:file]]) \end{itemize} The definition was given independently by \begin{itemize}% \item [[Ezra Getzler]], \emph{Batalin-Vilkovisky algebras and two-dimensional topological field theories} , Comm. Math. Phys. 159(2), 265--285 (1994) (\href{http://arxiv.org/abs/hep-th/9212043}{arXiv:hep-th/9212043}) \end{itemize} and \begin{itemize}% \item [[Graeme Segal]], \emph{Topological field theory} , (1999), Notes of lectures at Stanford university. (\href{http://www.cgtp.duke.edu/ITP99/segal/}{web}). See in particular \href{http://www.cgtp.duke.edu/ITP99/segal/stanford/lect5.pdf}{lecture 5} (``topological field theory with cochain values''). \end{itemize} The classification of [[TCFT]]s (i.e. ``non-compact'' local ([[extended TQFT|extended]] 2d TQFT)) by [[Calabi-Yau A-infinity categories]] is due to \begin{itemize}% \item [[Kevin Costello]], \emph{Topological conformal field theories and Calabi-Yau categories} Advances in Mathematics, Volume 210, Issue 1, (2007), (\href{http://arxiv.org/abs/math/0412149}{arXiv:math/0412149}) \item [[Kevin Costello]], \emph{The Gromov-Witten potential associated to a TCFT} (\href{http://arxiv.org/abs/math/0509264}{arXiv:math/0509264}) \end{itemize} following conjectures by [[Maxim Kontsevich]], e.g. \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Homological algebra of mirror symmetry} , in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Z\"u{}rich, 1994), pages 120--139, Basel, 1995, Birkh\"a{}user. \end{itemize} The classification of local ([[extended TQFT|extended]]) 2d TQFT (i.e. the ``compact'' but fully local case) is spelled out in \begin{itemize}% \item [[Chris Schommer-Pries]], \emph{The Classification of Two-Dimensional Extended Topological Field Theories} (\href{http://arxiv.org/abs/1112.1000}{arXiv:1112.1000}) \end{itemize} This classification is a precursor of the full [[cobordism hypothesis]]-theorem. This, and the reformulation of the original TCFT constructions in full generality is in \begin{itemize}% \item [[Jacob Lurie]], section 4.2 of \emph{[[On the Classification of Topological Field Theories]]} (\href{http://arxiv.org/abs/0905.0465}{arXiv:0905.0465}) \end{itemize} [[!redirects 2d TQFTs]] [[!redirects 2d topological field theory]] [[!redirects 2d topological field theories]] [[!redirects 2d topological quantum field theory]] [[!redirects 2d topological quantum field theories]] \end{document}