\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{7-sphere} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{QuaternionicHopfFibration}{Quaternionic Hopf fibration}\dotfill \pageref*{QuaternionicHopfFibration} \linebreak \noindent\hyperlink{CosetSpaceRealization}{Coset space realizations}\dotfill \pageref*{CosetSpaceRealization} \linebreak \noindent\hyperlink{exotic_7spheres}{Exotic 7-spheres}\dotfill \pageref*{exotic_7spheres} \linebreak \noindent\hyperlink{G2Structure}{$G_2$-structure}\dotfill \pageref*{G2Structure} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[sphere]] of [[dimension]] 7. This is one of the [[parallelizable manifold|parallelizable]] spheres, as such corresponds to the [[octonions]] among the [[division algebras]], being the manifold of unit octonions, and is the only one of these which does not carry ([[Lie group|Lie]]) [[group]] structure but just [[Moufang loop]] structure. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{QuaternionicHopfFibration}{}\subsubsection*{{Quaternionic Hopf fibration}}\label{QuaternionicHopfFibration} The 7-sphere participates in the [[quaternionic Hopf fibration]], the analog of the complex [[Hopf fibration]] with the field of [[complex numbers]] replaced by the division ring of [[quaternions]] or Hamiltonian numbers $\mathbb{H}$. \begin{displaymath} \itexarray{ S^3 &\hookrightarrow& S^7 \\ && \downarrow^\mathrlap{p} \\ && S^4 &\stackrel{}{\longrightarrow}& \mathbf{B} SU(2) } \end{displaymath} Here the idea is that $S^7$ can be construed as $\{(x, y) \in \mathbb{H}^2: {|x|}^2 + {|y|}^2 = 1\}$, with $p$ mapping $(x, y)$ to $x/y$ as an element in the [[projective line]] $\mathbb{P}^1(\mathbb{H}) \cong S^4$, with each [[fiber]] a [[torsor]] parametrized by quaternionic [[scalars]] $\lambda$ of unit [[norm]] (so $\lambda \in S^3$). This canonical $S^3$-bundle (or $SU(2)$-bundle) is classified by a map $S^4 \to \mathbf{B} SU(2)$. \hypertarget{CosetSpaceRealization}{}\subsubsection*{{Coset space realizations}}\label{CosetSpaceRealization} \begin{prop} \label{QuotientOfSpin7ByG2IsS7}\hypertarget{QuotientOfSpin7ByG2IsS7}{} \textbf{([[coset space]] of [[Spin(7)]] by [[G2]] is [[7-sphere]])} Consider the canonical [[action]] of [[Spin(7)]] on the [[unit sphere]] in $\mathbb{R}^8$ (the [[7-sphere]]), \begin{enumerate}% \item This action is is [[transitive action|transitive]]; \item the [[stabilizer group]] of any point on $S^7$ is [[G2]]; \item all [[G2]]-subgroups of [[Spin(7)]] arise this way, and are all [[conjugate subgroup|conjugate]] to each other. \end{enumerate} Hence the [[coset space]] of [[Spin(7)]] by [[G2]] is the [[7-sphere]] \begin{displaymath} S^7 \;\simeq_{diff}\; Spin(7)/G_2 \,. \end{displaymath} \end{prop} (e.g \hyperlink{Varadarajan01}{Varadarajan 01, Theorem 3}) Other coset realizations of the usual [[differentiable manifold|differentiable]] 7-sphere (\hyperlink{Choquet-Bruhat+DeWitt-Morette00}{Choquet-Bruhat, DeWitt-Morette 00, p. 288}): \begin{itemize}% \item $S^7 \simeq_{diff}$ [[Spin(6)]]$/SU(3) \simeq_{iso} SU(4)/SU(3)$ (by \href{sphere#OddDimSphereAsSpecialUnitaryCoset}{this Prop.}); \item $S^7 \simeq_{diff} Spin(5)/SU(2)$ (\hyperlink{AwadaDuffPope83}{Awada-Duff-Pope 83}, \hyperlink{DuffNilssonPope83}{Duff-Nilsson-Pope 83}) \end{itemize} These three coset realizations of `squashed' 7-spheres together with a fourth \begin{itemize}% \item $S^7 \simeq_{diff} Spin(8)/Spin(7)$, \end{itemize} the realization of the `round' 7-sphere, may be seen jointly as resulting from the 8-dimensional representations of even [[Clifford algebras]] in 5, 6, 7, and 8 dimensions (see \hyperlink{Baez}{Baez}) and as such related to the four [[normed division algebras]]. See also \hyperlink{Choquet-Bruhat+DeWitt-Morette00}{Choquet-Bruhat+DeWitt-Morette00, pp. 263-274}. The following gives an [[exotic 7-sphere]]: \begin{itemize}% \item $S^7 \simeq_{homeo} Sp(1)\backslash Sp(2)/Sp(1)$ ([[Gromoll-Meyer sphere]]) \end{itemize} $\backslash$linebreak \hypertarget{exotic_7spheres}{}\subsubsection*{{Exotic 7-spheres}}\label{exotic_7spheres} A celebrated result of Milnor is that $S^7$ admits [[exotic smooth structures]] (see at \emph{[[exotic 7-sphere]]}), i.e., there are [[smooth manifold]] structures on the [[topological manifold]] $S^7$ that are not [[diffeomorphism|diffeomorphic]] to the standard smooth structure on $S^7$. More structurally, considering smooth structures up to [[orientation|oriented]] diffeomorphism, the different smooth structures form a [[monoid]] under a (suitable) operation of [[connected sum]], and this monoid is isomorphic to the [[cyclic group]] $\mathbb{Z}/(28)$. With the notable possible exception of $n = 4$ (where the question of existence of exotic 4-spheres is wide open), exotic spheres first occur in dimension $7$. This phenomenon is connected to the [[h-cobordism theorem]] (the monoid of smooth structures is identified with the monoid of h-cobordism classes of oriented [[homotopy spheres]]). One explicit construction of the smooth structures is given as follows (see \hyperlink{Mil2}{Milnor 1968}). Let $W_k$ be the algebraic variety in $\mathbb{C}^5$ defined by the equation \begin{displaymath} z_1^{6 k - 1} + z_2^3 + z_3^2 + z_4^2 + z_5^2 = 0 \end{displaymath} and $S_\epsilon \subset \mathbb{C}^5$ a sphere of small radius $\epsilon$ centered at the origin. Then each of the $28$ smooth structures on $S^7$ is represented by an intersection $W_k \cap S_\epsilon$, as $k$ ranges from $1$ to $28$. These manifolds sometimes go by the name \emph{Brieskorn manifolds} or \emph{[[Brieskorn spheres]]} or \emph{[[Milnor spheres]]}. \hypertarget{G2Structure}{}\subsubsection*{{$G_2$-structure}}\label{G2Structure} Let $\phi_0 \in \Omega^3(\mathbb{R}^7)$ be the [[associative 3-form]] and let \begin{displaymath} \Phi_0 \in \Omega^4(\mathbb{R} \oplus \mathbb{R}^7) \end{displaymath} be given by \begin{displaymath} \Phi_0 = d x_0 \wedge \phi_0 + \star \phi_0 \end{displaymath} (where $x_0$ denotes the canonical coordinate on the first factor of $\mathbb{R}$ and $\phi_0$ is pulled back along the projection to $\mathbb{R}^7$) . By construction this is its own [[Hodge dual]] \begin{displaymath} \Phi = \star \Phi \,. \end{displaymath} This implies that as we restrict $\Phi_0$ to \begin{displaymath} \mathbb{R}^8 - \{0\} \simeq \mathbb{R} \times S^7 \end{displaymath} then there is a unique 3-form \begin{displaymath} \phi \in \Omega^3(S^7) \end{displaymath} on the 7-sphere such that \begin{displaymath} \Phi_0 = r^3 \wedge \phi + r^4 \star_{S^7} \phi \;\;\;\; (on \; \mathbb{R}^8 - \{0\}) \,. \end{displaymath} This 3-form $\phi$ defines a [[G2-structure]] on $S^7$. It is \emph{nearly parallel} in that \begin{displaymath} d \phi = 4 \star \phi \,. \end{displaymath} (e.g. \hyperlink{Lotay12}{Lotay 12, def.2.4}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[2-sphere]] \item [[3-sphere]] \item [[4-sphere]] \item [[6-sphere]] \item 7-sphere [[exotic 7-sphere]] \item [[n-sphere]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Martin Cederwall]], Christian R. Preitschopf, \emph{The Seven-sphere and its Kac-Moody Algebra}, Commun. Math. Phys. 167 (1995) 373-394 (\href{http://arxiv.org/abs/hep-th/9309030}{arXiv:hep-th/9309030}) \item Takeshi \^O{}no, \emph{On the Hopf fibration $S^7 \to S^4$ over $Z$}, Nagoya Math. J. Volume 59 (1975), 59-64. (\href{http://projecteuclid.org/euclid.nmj/1118795554}{Euclid}) \end{itemize} Relation to the [[Milnor fibration]]: \begin{itemize}% \item [[Kenneth Intriligator]], [[Hans Jockers]], [[Peter Mayr]], [[David Morrison]], M. Ronen Plesser, \emph{Conifold Transitions in M-theory on Calabi-Yau Fourfolds with Background Fluxes}, Adv.Theor.Math.Phys. 17 (2013) 601-699 (\href{http://arxiv.org/abs/1203.6662}{arXiv:1203.6662}) \end{itemize} An [[ADE classification]] of finite subgroups of $SO(8)$ [[free action|acting freely]] on $S^7$ (see at \emph{[[group action on an n-sphere]]}) such that the quotient is [[spin structure|spin]] and has at least four [[Killing spinors]] (see also at [[ABJM model]]) is in \begin{itemize}% \item Paul de Medeiros, [[José Figueroa-O'Farrill]], Sunil Gadhia, [[Elena Méndez-Escobar]], \emph{Half-BPS quotients in M-theory: ADE with a twist}, JHEP 0910:038,2009 (\href{http://arxiv.org/abs/0909.0163}{arXiv:0909.0163}, \href{http://www.maths.ed.ac.uk/~jmf/CV/Seminars/YRM2010.pdf}{pdf slides}) \item Paul de Medeiros, [[José Figueroa-O'Farrill]], \emph{Half-BPS M2-brane orbifolds} (\href{http://arxiv.org/abs/1007.4761}{arXiv:1007.4761}) \end{itemize} Discussion of [[subgroups]]: \begin{itemize}% \item [[Veeravalli Varadarajan]], \emph{Spin(7)-subgroups of SO(8) and Spin(8)}, Expositiones Mathematicae, 19 (2001): 163-177 (\href{https://core.ac.uk/download/pdf/81114499.pdf}{pdf}) \end{itemize} Discussion of [[exotic smooth structures]] on 7-spheres includes \begin{itemize}% \item Wikipedia, \emph{Exotic sphere}, \href{https://en.wikipedia.org/wiki/Exotic_sphere}{link}. \end{itemize} The explicit construction of exotic 7-spheres by intersecting algebraic varieties with spheres is described in \begin{itemize}% \item [[John Milnor]], ``Singular points of complex hypersurfaces'' , Princeton Univ. Press (1968). \end{itemize} Discussion of (nearly) [[G2-structures]] on $S^7$ and [[calibrated submanifolds]] includes \begin{itemize}% \item [[Jason Lotay]], \emph{Associative Submanifolds of the 7-Sphere}, Proc. London Math. Soc. (2012) 105 (6): 1183-1214 (\href{http://arxiv.org/abs/1006.0361}{arXiv:1006.0361}, \href{http://www.homepages.ucl.ac.uk/~ucahjdl/JDLotay_KIAS2011_slides.pdf}{talk slides}) \end{itemize} On [[coset]]-realizations: \begin{itemize}% \item Linus Kramer, \emph{Octonion Hermitian quadrangles}, Bull. Belg. Math. Soc. Simon Stevin Volume 5, Number 2/3 (1998), 353-362 (\href{https://projecteuclid.org/euclid.bbms/1103409015}{euclid:1103409015}) \item Y. Choquet-Bruhat, C. DeWitt-Morette, \emph{Analysis, Manifolds and Physics Part II}, North Holland 2000 \item M. A. Awada, [[Mike Duff]], [[Christopher Pope]], \emph{$N=8$ Supergravity Breaks Down to $N=1$}, Phys. Rev. Lett. 50, 294 – Published 31 January 1983 (\href{https://doi.org/10.1103/PhysRevLett.50.294}{doi:10.1103/PhysRevLett.50.294}) \item [[Mike Duff]], [[Bengt Nilsson]], [[Christopher Pope]], \emph{Spontaneous Supersymmetry Breaking by the Squashed Seven-Sphere}, Phys. Rev. Lett. 50, 2043 – Published 27 June 1983; Erratum Phys. Rev. Lett. 51, 846 (\href{https://doi.org/10.1103/PhysRevLett.50.2043}{doi:10.1103/PhysRevLett.50.2043}) \item [[John Baez]], \emph{Rotations in the 7th Dimension}, (\href{https://golem.ph.utexas.edu/category/2007/09/rotations_in_the_7th_dimension.html}{blog post}), and \emph{TWF 195}, (\href{http://math.ucr.edu/home/baez/week195.html}{webpage}) \end{itemize} [[!redirects 7-spheres]] [[!redirects seven sphere]] [[!redirects seven spheres]] \end{document}