\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - A-equivariant cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] \end{itemize} see there for background and context. This entry contains a basic introduction to getting equivariant cohomology from [[derived group scheme]]s. Previous: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - cohomology theories]] \item [[A Survey of Elliptic Cohomology - formal groups and cohomology]] \item [[A Survey of Elliptic Cohomology - E-infinity rings and derived schemes]] \item [[A Survey of Elliptic Cohomology - elliptic curves]] \item [[A Survey of Elliptic Cohomology - equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - derived group schemes and (pre-)orientations]] \end{itemize} Next: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - the derived moduli stack of derived elliptic curves]] \end{itemize} \begin{quote}% the following are rough unpolished notes taken more or less verbatim from some seminar talk -- needs attention, meaning: \textbf{somebody should go through this and polish} See also at \emph{[[equivariant elliptic cohomology]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{derived_elliptic_curves}{Derived Elliptic Curves}\dotfill \pageref*{derived_elliptic_curves} \linebreak \noindent\hyperlink{equivariant}{$\mathbf{G}$-Equivariant $A$-cohomology}\dotfill \pageref*{equivariant} \linebreak \noindent\hyperlink{the_strategy}{The Strategy}\dotfill \pageref*{the_strategy} \linebreak \noindent\hyperlink{equivariance}{$S^1$-equivariance}\dotfill \pageref*{equivariance} \linebreak \noindent\hyperlink{the_abelian_lie_group_case_for_a_point}{The Abelian Lie Group Case for a Point}\dotfill \pageref*{the_abelian_lie_group_case_for_a_point} \linebreak \noindent\hyperlink{the_abelian_case_for_general_spaces}{The Abelian Case for General Spaces}\dotfill \pageref*{the_abelian_case_for_general_spaces} \linebreak \noindent\hyperlink{the_nonabelian_lie_group_case}{The Non-Abelian Lie Group Case}\dotfill \pageref*{the_nonabelian_lie_group_case} \linebreak \hypertarget{derived_elliptic_curves}{}\section*{{Derived Elliptic Curves}}\label{derived_elliptic_curves} \textbf{Definition} A [[derived elliptic curve]] over an (affine) [[derived scheme]] $\mathrm{Spec} A$ is a commutative [[derived group scheme]] (CDGS) $E /A$ such that $\overline{E} \to \mathrm{Spec} \pi_0 A$ is an [[elliptic curve]]. Let $A$ be an $E_\infty$-ring. Let $E(A)$ denote the $\infty$-groupoid of oriented elliptic curves over $\mathrm{Spec} A$. Note that $E(A)$ is in particular a space (we will return to this point later). The point is to prove the following due to Lurie. \textbf{Theorem} The functor $A \mapsto E(A)$ is representable by a derived Deligne-Mumford stack $\mathcal{M}^{Der} = (\mathcal{M} , O_\mathcal{M} )$. Further, $\mathcal{M}$ is equivalent to the topos underlying $\mathcal{M}_{1,1}$ and $\pi_0 O_\mathcal{M} = O_{\mathcal{M}_{1,1}}$. Also, restricting to discrete rings, $O_\mathcal{M}$ provides a lift in sense of Hopkins and Miller. \hypertarget{equivariant}{}\section*{{$\mathbf{G}$-Equivariant $A$-cohomology}}\label{equivariant} \hypertarget{the_strategy}{}\subsection*{{The Strategy}}\label{the_strategy} \begin{enumerate}% \item Define $A_{S^1 } (*)$; \item Extend to $A_{S^1} (X)$ where $X$ is a trivial $S^1$-space; \item Define $A_T (X)$ where $T$ is a compact abelian Lie group where $X$ is again a trivial $T$-space; \item Extend to $A_T (X)$ for any (finite enough) $T$-space; \item Define $A_G (X)$ for $G$ any compact Lie group. \end{enumerate} \hypertarget{equivariance}{}\subsection*{{$S^1$-equivariance}}\label{equivariance} To accomplish (1) we need a map \begin{displaymath} \sigma : \mathrm{Spf} A^{\mathbb{C} P^\infty} \to \mathbf{G} \end{displaymath} over $\mathrm{Spec} A$. Then we can define $A_{S^1} (*) = O (\mathbf{G})$. Such a map arises from a completion map \begin{displaymath} A_{S^1} \to A^{\mathbb{C}P^\infty} \end{displaymath} which we may interpret as a preorientation $\sigma \in \mathrm{Map} (BS^1 , \mathbf{G} (A))$. Recall that such a map $\sigma$ is an orientation if the induced map to the formal completion of $\mathbf{G}$ is an isomorphism. Recall two facts: \begin{enumerate}% \item There is a bijection $\{ BS^1 \to \mathbf{G} (A) \} \leftrightarrow \{ \mathrm{Spf} A^{BS^1} \to \mathbf{G} \}$; \item Orientations of the multiplicative group $\mathbf{G}_m$ associated to $A$ are in bijection with maps of $E_\infty$-rings $\{ K \to A\}$, where $K$ is the K-theory spectrum. \end{enumerate} \textbf{Theorem} We can define equivariant $A$-cohomology using $\mathbf{G}_m$ if and only if $A$ is a $K$-algebra. \hypertarget{the_abelian_lie_group_case_for_a_point}{}\subsection*{{The Abelian Lie Group Case for a Point}}\label{the_abelian_lie_group_case_for_a_point} Fix $\mathbf{G}/A$ oriented. Now let $T$ be a compact abelian Lie group. We construct a commutative [[derived group scheme]] $M_T$ over $A$ whose global sections give $A_T$ which is equipped with an appropriate completion map. \textbf{Definition} Define the Pontryagin dual, $\hat T$ of $T$ by $\hat T := \mathrm{Hom}_\mathrm{Lie} (T, S^1)$. \textbf{Examples} \begin{enumerate}% \item $T=T^n$, the $n$-fold torus. Then $\hat T = \mathbb{Z}^n$ as \begin{displaymath} \hat T \ni ( \theta_1 , \dots , \theta_n ) \mapsto (k_1 \theta_1 , \dots , k_n \theta_n ). \end{displaymath} \item If $T = \{ e \}$, then $\hat T = T$. \end{enumerate} \textbf{Pontryagin Duality} If $T$ is an abelian, locally compact topological group then $\hat \hat T \simeq T$. \textbf{Definition} Let $B$ be an $A$-algebra. Define $M_T$ by \begin{displaymath} M_T (B) := \mathrm{Hom}_\mathrm{AbTop} (\hat T , \mathbf{G} (B)). \end{displaymath} Further, $M_T$ is representable. \textbf{Examples} \begin{enumerate}% \item $M_{S^1} (B) = \mathrm{Hom} ( \mathbb{Z} , \mathbf{G} (B)) = \mathbf{G} (B).$ \item $M_{T^n} = \mathbf{G} \times_{\mathrm{Spec} A} \dots \times_{\mathrm{Spec} A} \mathbf{G}.$ \item $M_{\mathbb{Z}/n} = \mathrm{hker} (\times n: \mathbf{G}\to \mathbf{G}).$ \item $M_{\{e\}} (B) = \mathrm{Hom} ( \{e \} , \mathbf{G} (B) = \{e\}$, so $M_{\{e\}}$ is final over $\mathrm{Spec} A$, hence it is isomorphic to $\mathrm{Spec} A$. \end{enumerate} How do we get a completion map $\sigma_T : BT \to M_T (A)$ for all $T$ given an orientation $\sigma_{S^1} : BS^1 \to \mathbf{G} (A)$? By a composition: define \begin{displaymath} Bev: BT \to \mathrm{Hom}(\hat T , BS^1), \; p \mapsto (f \mapsto Bf(p)) \end{displaymath} then define \begin{displaymath} \sigma_T := \sigma_{S^1} \circ Bev. \end{displaymath} \textbf{Proposition} There exists a map $\hat M$ such that the assignment $T \mapsto M_T$ factors as $T \mapsto \hat M (BT)$. That is the functor $M$ factors through the category of classifying spaces of compact Abelian Lie groups $B(CALG)$ (considered as orbifolds). Further, such factorizations are in bijection with the preorientations of $\mathbf{G}$. \emph{Proof.} That such a factorization exists defines $\hat M$ on objects. Now by choosing a base point in $BT'$ we have \begin{displaymath} \mathrm{Hom} (BT , BT' ) \simeq BT' \times \mathrm{Hom} (T, T') \end{displaymath} as spaces. Now we need a map \begin{displaymath} BT' \to \mathrm{Hom} (M_T , M_{T'}) . \end{displaymath} Because this map must be functorial in $T$ and $T'$ we can restrict to the universal case where $T$ is trivial and then \begin{displaymath} BT' \to \mathrm{Hom} ( M_{\{e\}} , M_{T'} ) = M_{T'} (A) \end{displaymath} is just a preorientation $\sigma_{T'}$. \hypertarget{the_abelian_case_for_general_spaces}{}\subsection*{{The Abelian Case for General Spaces}}\label{the_abelian_case_for_general_spaces} We will see that $A_T (X)$ is the global sections of a quasi-coherent sheaf on $M_T$. \textbf{Theorem} Let $\mathbf{G}$ be preoriented and $X$ a finite $T$-CW complex. There exist a unique family of functors $\{ F_T \}$ from finite $T$-spaces to the category of quasi-coherent sheaves on $M_T$ such that \begin{enumerate}% \item $F_T$ maps $T$-equivariant (weak) homotopy equivalences to equivalence of quasi-coherent sheaves; \item $F_T$ maps finite homotopy colimits to finite homotopy limits of quasi-coherent sheaves; \item $F_T (*) = O (M_\mathbf{G})$; \item If $T \subset T'$ and $X' = (X \times T' )/T$ then $F_{T'} (X') \simeq f_* (F_T (X))$, where $f: M_T \to M_{T'}$ is the induced map; \item The $F_T$ are compatible under finite chains of inclusions of subgroups $T \subset T' \subset T'' \dots$. \end{enumerate} \emph{Proof.} Use (2) to reduce to the case where $X$ is a $T$-equivariant cell, i.e. $X = T/ T_0 \times D^k$ for some subgroup $T_0 \subset T$. Use (1) to reduce to the case where $X = T/T_0$. Use (3) to conclude that $F_T (T/T_0) = f_* F_{T_0} (*)$. Finally, (4) implies that $F_{T_0} (*) = \hat M (*/T_0 )$, where $\hat M$ is specified by the preorientation. \begin{quote}% For trivial actions there is no dependence on the preorientation. \end{quote} \textbf{Remark} \begin{enumerate}% \item $F_T (X)$ is actually a sheaf of algebras. \item If $X,Y$ are $T$-spaces then we have maps \begin{displaymath} F_T (X) \to F_T (X \times Y) \leftarrow F_T (Y) \end{displaymath} and \begin{displaymath} F_T (X) \otimes F_T (Y) \to F_T (X \times Y). \end{displaymath} \item Define relative version for $X_0 \subset X$ by \begin{displaymath} F_T (X, X_0 ) = hker (F_T (X) \to F_T (X_0 )) \end{displaymath} and for all $T$-spaces $Y$ we have a map \begin{displaymath} F_T (X, X_0 ) \otimes_{A} F_T (Y) \to F_T (X \times Y , X_0 \times Y). \end{displaymath} \end{enumerate} \textbf{Definition} $A_T (X) = \Gamma (F_T (X))$ as an $E_\infty$-ring (algebra). We now verify loop maps on $A_T$. Recall that in the classical setting $A^n (X)$ is represented by a space $Z_n$ and we have suspension maps $Z_0 \to (S^n \to Z_n)$. Now we need to consider all possible $T$-equivariant deloopings, that is $T$-maps from $S^n \to Z_n$. \textbf{Theorem} Let $\mathbf{G}$ be oriented, $V$ a finite dimensional unitary representation of $T$. Denote by $SV \subset BV$ the unit sphere inside of the unit ball. Define $L_V = F_T (BV, SV)$. Then \begin{enumerate}% \item $L_V$ is a line bundle on $M_T$, i.e. invertible; \item For all (finite) $T$-spaces $X$ the map \end{enumerate} \begin{displaymath} L_V \otimes F_T (X) \to F_T (X \times BV, X \times SV) \end{displaymath} is an isomorphism. \emph{Proof for $T = S^1 = U(1)$ and $V = \mathbb{C}$.} Then \begin{displaymath} L_V = hker ( F_T (BV) \to F_T (SV)) . \end{displaymath} As $BV$ is contractible $F_T (BV) = O (\mathbf{G})$ and by property (3) above $F_T (SV) = f_* (O (\mathrm{Spec} A))$ for $f: \mathrm{Spec} A \to \mathbf{G}$ is the identity section. As $\mathbf{G}$ is oriented, $\pi_0 \mathbf{G} / \pi_0 \mathrm{Spec} A$ is smooth of relative dimension 1, so $L_V$ can be though of as the invertible sheaf of ideals defining the identity section of $\mathbf{G}$. Suppose $V$ and $V'$ are representations of $T$ then $L_V \otimes L_{V'} \to L_{V \oplus V'}$ is an equivalence. So if $W$ is a virtual representation (i.e. $W = U - U'$) then $L_W = L_U \otimes (L_{U'} )^{-1} .$ \textbf{Definition} Let $V$ be a virtual representation of $T$ and define \begin{displaymath} A_T^V (X) = \pi_0 \Gamma (F_T (X) \otimes L_V^{-1}) . \end{displaymath} \begin{quote}% The point is that in order to define equivariant cohomology requires functors $A_G^W$ for all representations of $G$, not just the trivial ones. In the derived setting we obtain this once we have an orientation of $\mathbf{G}$. \end{quote} \hypertarget{the_nonabelian_lie_group_case}{}\subsection*{{The Non-Abelian Lie Group Case}}\label{the_nonabelian_lie_group_case} Let $A$ be an $E_\infty$-ring, $\mathbf{G}$ an orientated commutative [[derived group scheme]] over $\mathrm{Spec} A$, and $T$ a (not necessarily Abelian) compact Lie group. \textbf{Theorem} There exists a functor $A_T$ from (finite?) $T$-spaces to Spectra which is uniquely characterized by the following. \begin{enumerate}% \item $A_T$ preserves equivalence; \item For $T_0 \subset T$, $A_{T_0} (X) = A_T ((X \times G) / T_0 )$; \item $A_T$ maps homotopy colimits to homotopy limits; \item If $T$ is Abelian, then $A_T$ is defined as above; \item For all spaces $X$ the map \end{enumerate} \begin{displaymath} A_T (X) \to A_T (X \times E^{ab} T) \end{displaymath} where $E^{ab} T$ is a $T$-space characterized by the requirement that for all Abelian subgroups $T_0 \subset T$, $(E^{ab} T )^{T_0}$ is contractible and empty for $T_0$ not Abelian. Further, for Borel equivariant cohomology we require \begin{enumerate}% \item If $T = \{e \}$, then $A_T(X) = A(X) = A^X$; \item $A_T (X) \to A_T (X \times ET)$ is an isomorphism. \end{enumerate} \emph{Proof.} In the case of ordinary equivariant cohomology we can use property (5) to reduce to the case where $X$ has only Abelian stabilizer groups. Then via (3) we reduce to $X$ being a colimit of $T$-equivariant cells $D^k \times T/T_0$ for $T_0$ Abelian. Via homotopy equivalence (1) we reduce to $X = T / T_0$. Using property (2) we see $A_T (X) = A_{T_0} (*)$, so (4) yields $A_{T_0} (*) = \hat M (*/T_0 )$ \end{document}