\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - cohomology theories} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] \end{itemize} see there for background and context. This entry reviews basics of [[periodic cohomology theory|periodic]] [[multiplicative cohomology theory|multiplicative]] [[cohomology theory|cohomology theories]] and their relation to formal group laws. Next: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - formal groups and cohomology]] \end{itemize} \hypertarget{rough_notes_from_a_talk}{}\subsection*{{rough notes from a talk}}\label{rough_notes_from_a_talk} \begin{quote}% the following are rough unpolished notes taken more or less verbatim from some seminar talk -- needs attention \end{quote} A complex oriented [[cohomology]] theory (meant is here and in all of the following a [[generalized (Eilenberg-Steenrod) cohomology]]) is one with a \emph{good notion of [[Thom class]]es, equivalently first [[Chern class]] for complex [[vector bundle]]} \begin{quote}% (this ``good notion'' will boil down to certain extra assumptions such as multiplicativity and periodicity etc. What one needs is that the [[cohomology ring]] assigned by the cohomology theory to $\mathbb{C}P^\infty \simeq \mathcal{B}U(1)$ is a power series ring. The formal variable of that is then identified with the universal first Chern class as seen by that theory). \end{quote} ordinary [[Chern class]] lives in [[integral cohomology]] $H^*(-,\mathbb{Z})$ or in [[K-theory]] $K^*(-)$ where for a [[vector bundle]] $V$ we would set $c_1(V) := ([V]-1)\beta$ where $\beta$ is the [[Bott generator]]. In the first case we have that under [[tensor product]] of [[vector bundle]]s the class behaves as \begin{displaymath} c_1(V\otimes W) = c_1(V) + c_1(W) \end{displaymath} whereas in the second case we get \begin{displaymath} c_1(V \otimes W) = c_1(V)c_1(W)\beta^{-1} + c_1(V) + c_1(W) \,. \end{displaymath} In general we will get that the [[Chern class]] of a tensor product is given by a certain [[power series]] $E^*(pt)$ not all [[formal group law]]s arises this way. the [[Landweber criterion]] gives a condition under which there is a cohomology theory \textbf{definition} of complex-orientation there is an \begin{displaymath} x \in \tilde E^2(\mathbb{C}P^\infty) \end{displaymath} such that under the map \begin{displaymath} \tilde E^2(\mathbb{C}P^\infty) \to \tilde E^2(\mathbb{C}P^1) \simeq \tilde E^2(S^1) \simeq E^0({*}) \end{displaymath} induced by $\mathbb{C}P^1 \to \mathbb{C}P^\infty$ we have $x \mapsto 1$ \textbf{remark} this also gives [[Thom class]]es since $\mathbb{C}P^\infty \to (\mathbb{C}P^\infty)^\gamma$ is a [[homotopy equivalence]] \begin{displaymath} \tilde E^2((\mathbb{C}P^\infty)^\gamma) \simeq \tilde E^2((\mathbb{C}P^\infty)) \ni X \end{displaymath} Thom iso $\tilde H^{*+2}(X^\gamma) \simeq H^*(X)$ \ldots{} (here and everywhere the tilde sign is for [[reduced cohomology]]) \textbf{definition (Bott element and even periodic cohomology theory)} \begin{itemize}% \item An [[even cohomology theory]] is one whose odd cohomology rings vanish: $E^{2k+1}(X) = 0$. \item A [[periodic cohomology theory]] is one with a [[Bott element]] $\beta \in E^2({*})$ which is invertible (under multiplication in the [[cohomology ring]] of the point) so that gives an isomorphism $(-)\cdot \beta : E^*({*}) \simeq E^{*+2}({*})$ \end{itemize} Periodic cohomology theories are complex-orientable. $E^*(\mathbb{C}P^\infty)$ can be calculated using the [[Atiyah-Hirzebruch spectral sequence]] \begin{displaymath} H^p(X, E^q({*})) \Rightarrow E^{p+q}(X) \end{displaymath} notice that since $\mathbb{C}P^\infty$ is [[homotopy equivalence|homotopy equivalent]] to the [[classifying space]] $\mathcal{B}U(1)$ (which is a topological group) it has a product on it \begin{displaymath} \mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty \end{displaymath} which is the one that induces the [[tensor product]] of [[line bundle]]s classified by maps into $\mathbb{C}P^\infty$. on (at least on even periodic cohomology theories) this induces a map of the form \begin{displaymath} \itexarray{ \mathbb{C}P^\infty \times \mathbb{C}P^\infty &\to& \mathbb{C}P^\infty \\ E({*})[[x,y]] &\leftarrow& E(*)[[t]] \\ f(x,y) &\leftarrow |& t } \end{displaymath} this $f$ is called a [[formal group law]] if the following conditions are satisfied \begin{enumerate}% \item \textbf{commutativity} $f(x,y) = f(y,x)$ \item \textbf{identity} $f(x,0) = x$ \item \textbf{associtivity} f(x,f(y,z)) = f(f(x,y),z) \end{enumerate} \textbf{remark} the second condition implies that the constant term in the power series $f$ is 0, so therefore all these power series are automatically invertible and hence there is no further need to state the existence of inverses in the formal group. So these $f$ always start as \begin{displaymath} f(x,y) = x + y + \cdots \end{displaymath} The [[Lazard ring]] is the ``universal formal group law''. it can be presented as by generators $a_{i j}$ with $i,j \in \mathbb{N}$ \begin{displaymath} L = \mathbb{Z}[a_{i j}] / (relations 1-3 below) \end{displaymath} and relatins as follows \begin{enumerate}% \item $a_{i j} = a_{j i}$ \item $a_{10} = a_{01} = 1$; $\forall i \neq 0: a_{i 0} = 0$ \item the obvious associativity relation \end{enumerate} the universal formal group law we get from this is the power series in $x,y$ with coefficients in the [[Lazard ring]] \begin{displaymath} \ell(x,y) = \sum_{i,j} a_{i j} x^j y^j \in L[[x,y]] \,. \end{displaymath} \textbf{remark} the formal group law is not canonically associated to the cohomology theory, only up to a choice of rescaling of the elements $x$. But the underlying [[formal group]] is independent of this choice and well defined. For any ring $S$ with formal group law $g(x,y) \in power series in x,y with coefficients in S$ there is a unique morphism $L \to S$ that sends $\ell$ to $g$. \textbf{remark} Quillen's theorem says that the Lazard ring is the ring of complex cobordisms \textbf{some universal cohomology theories} $M U$ is the [[spectrum]] for [[complex cobordism cohomology theory]]. The corresponding [[spectrum]] is in degree $2 n$ given by \begin{displaymath} M U(2n) = Thom \left( standard associated bundle to universal bundle \itexarray{ E U(n) \\ \downarrow \\ B U(n) } \right) \end{displaymath} periodic [[complex cobordism cohomology theory]] is given by \begin{displaymath} M P = \vee_{n \in \mathbb{Z}} \Sigma^{2 n} M U \end{displaymath} we get a canonical [[oriented cohomology theory|orientation]] from \begin{displaymath} \omega : \mathbb{C}P^\infty \stackrel{\simeq}{\to} M U(1) \;\;\;\; M U(\mathbb{C}P^\infty) \end{displaymath} this is the universal even periodic cohomology theory with orientation \textbf{Theorem (Quillen)} the [[cohomology ring]] $M P(*)$ of periodic [[complex cobordism cohomology theory]] over the point together with its [[formal group law]] is naturally isomorphic to the universal [[Lazard ring]] with its [[formal group law]] $(L,\ell)$ how one might make a [[formal group law]] $(R,f(x,y))$ into a cohomology theory use the classifying map $M P({*}) \to R$ to build the [[tensor product]] \begin{displaymath} E^n(X) := M P^n(X) \otimes_{M P({*})} R \end{displaymath} this construction could however break the left exactness condition. However, $E$ built this way will be left exact of the ring morphism $M P{{*}) \to R$ is a flat morphism. This is the [[Landweber exactness]] condition (or maybe slightly stronger). [[!redirects A Survey of Eilliptic Cohomology - cohomology theories]] \end{document}