\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - compactifying the derived moduli stack} [[!redirects A Survey of Elliptic Cohomology - compactifying the derived moduli space]] \begin{quote}% \textbf{Abstract} We sketch how to compactify $M^{Der}$ such that the underlying scheme is the Deligne-Mumford compactification of $M_{1,1}$. \end{quote} This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] \end{itemize} see there for background and context. Here are the entries on the previous sessions: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - cohomology theories]] \item [[A Survey of Elliptic Cohomology - formal groups and cohomology]] \item [[A Survey of Elliptic Cohomology - E-infinity rings and derived schemes]] \item [[A Survey of Elliptic Cohomology - elliptic curves]] \item [[A Survey of Elliptic Cohomology - equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - derived group schemes and (pre-)orientations]] \item [[A Survey of Elliptic Cohomology - A-equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - the derived moduli stack of derived elliptic curves]] \item [[A Survey of Elliptic Cohomology - towards a proof]] \end{itemize} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{compactifying_}{}\section*{{Compactifying $M^{Der}$}}\label{compactifying_} \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{the_tate_curve}{The Tate Curve}\dotfill \pageref*{the_tate_curve} \linebreak \noindent\hyperlink{annular_field_theories}{Annular Field Theories}\dotfill \pageref*{annular_field_theories} \linebreak \noindent\hyperlink{}{$\overline{\mathbf{M}^{Der}}$}\dotfill \pageref*{} \linebreak \hypertarget{introduction}{}\subsection*{{Introduction}}\label{introduction} Let $\mathbf{M}^{Der}$ be the derived Deligne-Mumford moduli stack of oriented elliptic curves. Recall that the underlying Deligne-Mumford stack $\pi_0 \mathbf{M}^{Der}$ is $\mathbf{M}_{1,1}$ the classical Deligne-Mumford stack which is the fine moduli stack of elliptic curves. We would like to construct a derived Deligne-Mumford stack $\overline{\mathbf{M}^{Der}}$ such that $\pi_0 \mathbf{M}^{Der}$ is the classical compactification $\overline{\mathbf{M}_{1,1}}$. Recall that one can define the $E_\infty$-ring $tmf[\Delta^{-1}]$ as the global sections of $\OM_{\mathbf{M}^{Der}}$. If we take global sections of $\mathbf{O}_{\overline{\mathbf{M}^{Der}}}$ then we get the $E_\infty$-ring $tmf$. \hypertarget{the_tate_curve}{}\subsection*{{The Tate Curve}}\label{the_tate_curve} Let us focus on elliptic curves over $\mathbb{C}$. The coarse moduli space of such elliptic curves is again $\mathbb{C}$ with the classifying map given by the $j$-invariant. $\mathbb{C}$ is not compact, but we can compactify the moduli space by allowing curves with nodal singularities (generalized elliptic curves). For each $q \in \mathbb{C}, \; \lvert q \rvert \lt 1$, there is an elliptic curve over $\mathbb{C}$ defined by a Weierstrass equation \begin{displaymath} y^2 + xy = x^3 +a_4(q) x + a_6 (q) . \end{displaymath} If $0 \lt \lvert q \rvert \lt 1$ the elliptic curve is isomorphic to $\mathbb{C}^* /q^\mathbb{Z}$ as a Riemann surface with group structure induced from $\mathbb{C}^*$ (equivalently, this curve corresponds to $\mathbb{C}/ \Lambda_\tau$ where $e^{2\pi i \tau} = q$). As a function of $q$, $a_4$ and $a_6$ are analytic over the open disk and their power series at $q=0$ have integral coefficients hence the Weierstrass equation defines an elliptic curve $T$ over $\mathbb{Z}[ [q] ]$. We really would like to think of $T$ as an elliptic curve over $\mathbb{Z} ( (q) ):= \mathbb{Z} [ [q] ][q^{-1}]$. It should be noted that this construction (which goes back to Tate) can be extended to more general fields. The Tate curve defines a cohomology theory $K_{Tate}$ (an elliptic spectrum). As a cohomology theory $K_{Tate}$ is just $K$-theory tensored with $\mathbb{Z}( (q) )$. \hypertarget{annular_field_theories}{}\subsection*{{Annular Field Theories}}\label{annular_field_theories} As shown in Pokman Cheung's thesis, the Tate curve has a connection to supersymmetric field theories as defined by Stolz and Teichner. The main result of is that a subspace of $2|1$ field theories (annular theories) is the $0th$-space of the spectrum $K_{Tate}$. Let $SAB$ be the subcategory of $2|1$-EB whose morphisms are annuli. Note that $SAB$ does not contain tori. $SAB$ in essence is completely determined by the supergroup $\mathbb{R}^{2|1}$. Let $AFT_n$ be the space of natural transformations analogous to the definition of Stolz and Teichner. \textbf{Theorem (Theorem 2.2.2 of Cheung).} For each $n \in \mathbb{Z}$, we have $AFT_n \simeq (K_{Tate})_n .$ \emph{Proof.} Let $A_{l,\tau}$ be the cylinder obtained by identifying non-horizontal sides of the parallelogram in the upper-half plane spanned by $l$ and $l\tau$ for $l \in \mathbb{R}_+$ and $\tau \in h$. Let $E$ be a degree 0 field theory. The family of cylinders $\{A_{l,\tau} \}$ has the properties that $A_{l, \tau+1} = A_{l , \tau}$ and $A_{l, \tau} \circ A_{l, \tau'} = A_{l, \tau + \tau'}$. For a fixed $l \in \mathbb{R}_+$, $\{E(A_{l,\tau}), \tau \in h \}$ is a commuting family of trace class (and hence compact) operators depending only on $\tau$ modulo $\mathbb{Z}$. Therefore, by writing $q= e^{2 \pi i \tau}$ we can write $E (A_{l, \tau}) = q^{L} q^{\overline{L}}$, where $L, \overline{L}$ are unbounded operators with discrete spectrum. \textbf{Lemma.} The spectrum of $L-\overline{L} \subseteq \mathbb{Z}$. Also, $\overline{L} = G^2$, where $G$ is an odd operator. \emph{Proof of Lemma.} The spectral argument follows from having an $S^1$ action. To see the second claim note that for fixed $l$, $\mathbb{R}^{2|1}_+ /l \mathbb{Z}$ is a super Lie semi-group and the functor $E$ gives a representation $\mathbb{R}^{2|1}_+ \to \mathrm{End} (E(S^1_l))$ which is compatible with the super-semigroup law on $\mathbb{R}^{2|1}$ given by \begin{displaymath} (z_1 , \overline{z}_1 , \theta_1) , (z_2 , \overline{z}_2 , \theta_2) \mapsto (z_1 + z_2 , \overline{z}_1 +\overline{z}_2 + \theta_1 \theta_2 , \theta_1 + \theta_2) . \end{displaymath} Now $\mathrm{Lie} (\mathbb{R}^{2|1}_+ ) = \langle \partial_z , \partial_{\overline{z}} , Q \rangle$, where $Q = \partial_\theta + \theta \partial_{\overline{z}}$. Under $E$ the vector fields map to $L, \overline{L},$ and $G$ respectively. Further, $[Q,Q] = 2Q^2 = 2 \partial_{\overline{z}},$ hence $G^2 = \overline{L}$. We see that a degree 0 theory is determined by a pair of operators $(L, G)$. By analyzing the spectral decomposition of the pair $(G, L-G^2)$ one can construct a weak equivalence of categories $AFT \to V$ (a homotopy equivalence of geometric realizations), where $V$ is a certain category of Clifford-modules. Following work of Segal it is proved that $|V| \simeq (K_{Tate})_0$. The nonzero degrees follow a similar line of reasoning. \hypertarget{}{}\subsection*{{$\overline{\mathbf{M}^{Der}}$}}\label{} We can extend the standard toric variety construction to derived schemes by replacing $\mathbb{C}$ by a fixed $E_\infty$-ring $R$. That is given a fan $F= \{U_\alpha \}$ we can build a derived scheme $X_F$ where $X_F = \varinjlim \{U_\alpha\}$ and $U_\alpha = \mathrm{Spec} \; R [S_{\sigma_\alpha}]$ is an affine derived scheme. We will define the (derived) Tate curve as the formal completion of the quotient of a toric variety. Let $F_0 = \{ \{0\} , \mathbb{Z}_{\ge 0} \}$, so $X_{F_0} = \mathrm{Spec} R [\mathbb{Z}_{\ge 0}] = \mathrm{Spec} R[q]$. Also, let $F= \langle \sigma_n \rangle_{n \in \mathbb{Z}}$, where \begin{displaymath} \sigma_n = \{ (a,b) \in \mathbb{Z} \times \mathbb{Z} \; | \; na \le b \le (n+1) a\}. \end{displaymath} Note that by projection onto the first factor we have a map of fans $F \to F_0$ and consequently an induced map on varieties $f: X_F \to \mathrm{Spec} \; R[q]$. Consider $f: X_F \to \mathrm{Spec} \; R[q]$, one can show that 1. $f^{-1} (q) \cong \mathbf{G}_m$ for $q \neq 0$; 1. $f^{-1} (0)$ is an infinite chain of rational curves, each intersecting the next in a node. Consider the automorphism $\tau : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by $\tau (a,b) = (a, b+a)$. Note that $\tau (\sigma_n ) = \tau (\sigma_{n+1})$, so $\tau$ preserves the fan $F$ and consequently is an automorphism of the resulting toric variety $X_F$ which we also denote by $\tau$. Then 1. $\tau$ acts on $f^{-1} (q)$ by multiplication by $q$, for $q \neq 0$; 1. $\tau$ acts freely on $f^{-1}$. Now define $\widehat{X}_F$ to be the formal completion of $X_F$ along $f^{-1} (0)$. Similarly, define $R[ [q] ]$ as the formal completion of $R[q]$ along $q=0$. One can show that $\tau^{\mathbb{Z}}$ which is the multiplicative group generated by $\tau$ acts freely on $\widehat{X}_F$. Define $\widehat{T}$ to be the formal (derived) scheme $\widehat{X}_F / \tau^\mathbb{Z}$. \textbf{Theorem (Lurie/Grothendieck).} The formal derived scheme $\widehat{T}$ is the completion of a unique derived scheme over $\mathrm{Spec} \; R[ [q] ]$. That is, there exists a unique derived scheme $T \to \mathrm{Spec} \; R[ [q] ]$ such that $\widehat{T} = \mathrm{Spf} \; T$. We call the derived scheme $T$ in the theorem above the \emph{Tate curve}. It is a fact that the restriction of $T$ to the punctured formal disk $\mathrm{Spec} \; R ( (q) )$ is an elliptic curve isomorphic to $\mathbf{G}_m / q^\mathbb{Z}$. We then see that an orientation of $T$ is equivalent to an orientation of $\mathbf{G}_m$ which is equivalent to working over the complex $K$-theory spectrum $K$. Therefore, the oriented Tate curve is equivalent to a map \begin{displaymath} T: \mathrm{Spec} \; K( (q) ) \to \mathbf{M}^{Der}. \end{displaymath} Now note that the involution $\alpha : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by $\alpha (a,b) = (a, -b)$ preserves the fan $F$ and $(\tau \circ \alpha)^2 = 1$. We allow $\alpha$ to be complex conjugation on $K((q))$ thought of as a group action of $\{\pm 1\}$, so we have a map $\mathrm{Spec} \; K( (q) ) / \{\pm 1\} \to \mathbf{M}^{Der}$. We can define a new derived Deligne-Mumford stack by forming an appropriate pushout square. Finally, one can show that the underlying scheme $\pi_0 \overline{\mathbf{M}^{Der}}$ is $\overline{\mathbf{M}_{1,1}}$. There are many subtleties associated with $\overline{\mathbf{M}^{Der}}$. For instance, we would like to glue the universal curve $\E$ over $\mathbf{M}^{Der}$ with $T$ to obtain a universal elliptic curve $\overline{\E}$ over $\overline{\mathbf{M}^{Der}}$, however the result is only a \emph{generalized} elliptic curve; it is not a derived group scheme over $\overline{\mathbf{M}^{Der}}$ as it only has a group structure over the smooth locus of the map $\overline{\E} \to \overline{\mathbf{M}^{Der}}$. Lurie asserts it is possible to construct the necessary geometric objects over $\overline{\mathbf{M}^{Der}}$ (I guess this will show up in DAG VII or VIII). The global sections of the structure sheaf thus constructed is the spectrum $tmf$. \end{document}