\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - derived group schemes and (pre-)orientations} This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] \end{itemize} see there for background and context. This entry contains a basic introduction to derived [[group scheme]]s and their orientations. Previous: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - cohomology theories]] \item [[A Survey of Elliptic Cohomology - formal groups and cohomology]] \item [[A Survey of Elliptic Cohomology - E-infinity rings and derived schemes]] \item [[A Survey of Elliptic Cohomology - elliptic curves]] \item [[A Survey of Elliptic Cohomology - equivariant cohomology]] \end{itemize} Next: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - derived group schemes and (pre-)orientations]] \item [[A Survey of Elliptic Cohomology - A-equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - the derived moduli stack of derived elliptic curves]] \end{itemize} \begin{quote}% the following are rough unpolished notes taken more or less verbatim from some seminar talk -- needs attention, meaning: \textbf{somebody should go through this and polish} \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{derived_group_schemes}{Derived group schemes}\dotfill \pageref*{derived_group_schemes} \linebreak \noindent\hyperlink{preorientations}{Preorientations}\dotfill \pageref*{preorientations} \linebreak \noindent\hyperlink{orientations}{Orientations}\dotfill \pageref*{orientations} \linebreak \noindent\hyperlink{the_multiplicative_derived_group_scheme}{The Multiplicative Derived Group Scheme}\dotfill \pageref*{the_multiplicative_derived_group_scheme} \linebreak \noindent\hyperlink{preorientations_of_}{Preorientations of $G_m$}\dotfill \pageref*{preorientations_of_} \linebreak \noindent\hyperlink{orientations_of_}{Orientations of $G_m$}\dotfill \pageref*{orientations_of_} \linebreak \noindent\hyperlink{connection_to_complex_orientation}{Connection to complex orientation}\dotfill \pageref*{connection_to_complex_orientation} \linebreak \noindent\hyperlink{the_additive_derived_group_scheme}{The Additive Derived Group Scheme}\dotfill \pageref*{the_additive_derived_group_scheme} \linebreak \hypertarget{introduction}{}\section*{{Introduction}}\label{introduction} Recall from last time that given $G$ an algebraic group such that the [[formal spectrum]] $Spf A(\mathbb{C}P^\infty)$ is the completion $\hat G$, we could define $A_{S^1}({*}) := \mathcal{o}_{G}$ then passing to germs gave a completion map \begin{displaymath} A_{S^1}({*}) \to A(\mathbb{C}P^\infty) = A^{Bor}_{S^1}({*}). \end{displaymath} The problem we (begin) to address here is how to extend this equivariant cohomology to other spaces besides the point. This requires derived algebraic geometry. \hypertarget{derived_group_schemes}{}\section*{{Derived group schemes}}\label{derived_group_schemes} Recall that a commutative [[group scheme]] over a scheme $X$ is a functor \begin{displaymath} G: \mathrm{Sch} /X^{op} \to \mathrm{Ab} \end{displaymath} such that composition with the forgetful functor $F: \mathrm{Ab} \to \mathrm{Set}$ is representable. We would like extend this definition to the world of [[derived scheme]]s. There are two problems \begin{enumerate}% \item Because of the higher categorical nature of derived schemes Hom sets are spaces. \item Everything should in the $\infty$-setting, that is defined only up to homotopy. \end{enumerate} We will not worry about the second concern and address the first by replacing the category $\mathrm{Ab}$ with $\mathrm{TopAb}$ and $\mathrm{Set}$ with $\mathrm{Top}$. \begin{quote}% The following definition is somewhat restrictive and really should incorporate more of the $\infty$-structure. \end{quote} \textbf{Definition} A commutative [[derived group scheme]] over a [[derived scheme]] $X$ is a topological functor \begin{displaymath} G: \mathrm{DSch} / X^{op} \to \mathrm{TopAb} \end{displaymath} such that composition with the forgetful functor $F: \mathrm{TopAb} \to \mathrm{Top}$ is representable (up to weak equivalence) by an object which is [[flat object|flat]] over $X$. \textbf{Examples} \begin{enumerate}% \item Let $X$ be a scheme, then we have an associated [[derived scheme]] $\overline{X}$. The structure sheaf of $\overline{X}$ is obtained by viewing the structure sheaf of $X$ as a presheaf of $E_\infty$-rings and then sheafifying. We then have an equivalence between commutative [[derived group scheme]]s over $\overline{X}$ and commutative [[group scheme]]s which are flat over $X$. \item For $X$ a [[derived scheme]] we have a map from commutative [[derived group scheme]]s over $X$ to commutative [[group scheme]]s which are flat over $\pi_0 X$. \end{enumerate} \hypertarget{preorientations}{}\section*{{Preorientations}}\label{preorientations} Throughout $A$ will be an $E_\infty$-ring, $X$ the affine [[derived scheme]] $\mathrm{Spec} A$, $G$ a commutative [[derived group scheme]] over $X$, $A_{S^1}$ the $E_\infty$-ring given by $\Gamma (G)$, and $A^{\mathbb{C}P^\infty}$ the $E_\infty$-ring given by \begin{displaymath} A^{\mathbb{C}P^\infty} = \mathrm{Hom}_{E_\infty} (\mathbb{C}P^\infty , A). \end{displaymath} \textbf{Definition}(Preliminary) A preorientation of $G$ is a morphism of commutative [[derived group scheme]]s over $X$ \begin{displaymath} \sigma : \mathrm{Spf} A^{\mathbb{C}P^\infty} \to G, \end{displaymath} where $\mathrm{Spf} A^{\mathbb{C}P^\infty}$ is the completion wrt the ideal $\mathrm{ker} (A^{\mathbb{C}P^\infty} \to A^{pt} = A)$. A preorientation is an orientation if the induced map \begin{displaymath} \hat \sigma : \mathrm{Spf} A^{\mathbb{C}P^\infty} \to \hat G \end{displaymath} is an isomorphism. Suppose that $G$ is affine, then a map \begin{displaymath} \sigma : \mathrm{Spf} A^{\mathbb{C}P^\infty} \to G \end{displaymath} corresponds to a map $A_{S^1} \to A^{\mathbb{C}P^\infty}$ which is the same as a map \begin{displaymath} \mathbb{C}P^\infty \to \mathrm{Hom} (X, G) = G(X). \end{displaymath} Hence we are led to the following definition. \textbf{Definition} Let $X$ be a [[derived scheme]] and $G$ a commutative [[derived group scheme]] over $X$. A preorientation of $G$ is a morphism of topological commutative monoids \begin{displaymath} \mathbb{P} (\mathbb{C} [\alpha]) = \mathbb{C}P^\infty \to G(X). \end{displaymath} Notice that $\mathbb{C}P^\infty$ is nearly freely generated. Indeed it follows from the fundamental theorem of algebra that as a topological monoid $\mathbb{C}P^\infty$ is generated by $\mathbb{C}P^1$ subject to the single relation that $\mathrm{pt} = \mathbb{C}P^0 \subset \mathbb{C}P^1$ is the monoidal unit. \textbf{Proposition} A preorientation up to homotopy is a map \begin{displaymath} S^2 \simeq \mathbb{C}P^1 \to G(X) \end{displaymath} that is an element of $\pi_2 (G(X))$. Hence, we always have at least one preorientation: the trivial one which corresponds to $0 \in \pi_2 (G(X))$. \hypertarget{orientations}{}\section*{{Orientations}}\label{orientations} As motivation recall that a map $s: A \to B$ of 1-dim [[formal group]]s is an isomorphism if and only if $s'$ is invertible. We would like to encode this in our derived language (without defining $s'$). \textbf{Definition} Let $A$ be an $E_\infty$-ring, $G$ a commutative [[derived group scheme]] over $\mathrm{Spec} A$ and $\sigma : S^2 \to G(A)$ a preorientation. Then $\sigma$ is an orientation if \begin{enumerate}% \item $\pi_0 G \to \mathrm{Spec} \pi_0 A$ is smooth of relative dimension 1, and \item The map induced by $\beta : \omega \to \pi_2 A$ \begin{displaymath} \pi_n A \otimes_{\pi_0 A} \omega \to \pi_{n+2} A \end{displaymath} is an isomorphism for each $n$. \end{enumerate} Note that (2) implies that $A$ is weakly periodic. Conversely, if $A$ is weakly periodic then (2) is equivalent to $\beta$ being an isomorphism. Before defining $\beta$ and $\omega$ we extend the above definition to [[derived group scheme]]s over an arbitrary [[derived scheme]]. \textbf{Definition} Let $X$ be a [[derived scheme]], $G$ a commutative [[derived group scheme]] over $X$ and $\sigma: S^2 \to G(X)$ a preorientation. Then $\sigma$ is an orientation if $(G, \sigma) |_U$ is an orientation for all $U \subset X$ affine. We now define the module $\omega$ and the map $\beta$. Let $A$ be an $E_\infty$-ring, $G$ a commutative [[derived group scheme]] over $\mathrm{Spec} A$ and let $G_0 = \pi_0 G$ a scheme over $\mathrm{Spec} \pi_0 A$. Let $\Omega$ denote the sheaf of differentials on $G_0 / \pi_0 A$. Then define \begin{displaymath} \omega := i^* \Omega, \; i: \mathrm{Spec} \pi_0 A \to G \end{displaymath} is the identity section. Now let $U \hookrightarrow G$ be an open affine subscheme containing the identity section, so $U = \mathrm{Spec} B$ for some $E_\infty$-ring $B$. Then $\sigma$ induces a map $B \to A^{S^2}$ which is the same as a map \begin{displaymath} \pi_0 B \to A(S^2)= \pi_0 A \oplus \pi_2 A . \end{displaymath} It is a fact that the map $\pi_0 B \to \pi_2 A$ is a derivation over $\pi_0 A$ and hence has a classifying map which yields a map \begin{displaymath} \beta : \omega \to \pi_2 A . \end{displaymath} \hypertarget{the_multiplicative_derived_group_scheme}{}\section*{{The Multiplicative Derived Group Scheme}}\label{the_multiplicative_derived_group_scheme} The naive guess for $G_m$ is $GL_1$, where $GL_1 (A) = A^x = (\pi_0 A)^x$. It is true that $GL_1$ is a [[derived scheme]] over $\mathrm{Spec} \mathbf{S}$, however it is not flat, nor is $GL_1 (A)$ an Abelian group as $A$ is an $E_\infty$-ring and not an honestly commutative ring. If $A$ is rational, that is there is a map $H \mathbb{Q} \to A$, then $GL_1 (A)$ can be given an Abelian group structure. Hence, $GL_1$ is a perfectly good [[group scheme]] defined on the category of rational $E_\infty$-rings, however this category is too small; there are too few rational $E_\infty$-rings. Recall that for a ring $R$, $R^x = \mathrm{Hom}_R (R [ t, t^{-1} ] , R)$. Further, recall that for a group $M$ we can form the group algebra $R[M]$ which is really a [[Hopf algebra]]. Then $\mathrm{Spec} R[M]$ is a [[group scheme]] over $\mathrm{Spec} A$. Further, $R[m]$ is characterized by \begin{displaymath} \mathrm{Ring} ( R[M] , B) = \mathrm{Ring} (R, B) \times \mathrm{Mon} (M,B) \end{displaymath} where $\mathrm{Mon}$ is the category of monoids and the ring $B$ is thought of as a monoid wrt to multiplication. Motivated by these observations we make the following definitions. \textbf{Definition} Let $A$ be an $E_\infty$-ring and $M$ a topological Abelian monoid, then we can define $A[M]$ which is characterized by \begin{displaymath} \mathrm{Alg}_A (A[M], B) \simeq \mathrm{Alg}_A (A,B) \times \mathrm{TopMon} (M, B^\times ). \end{displaymath} Recall that because of the higher categorical nature of things, the hom-sets above are spaces and the symbol $\simeq$ indicates weak equivalence of spaces. \textbf{Definition} Let $A$ be an $E_\infty$-ring. We define the multiplicative group corresponding to $A$ as \begin{displaymath} G_m = \mathrm{Spec} A[ \mathbb{Z}]. \end{displaymath} $G_m$ is a derived commutative group scheme over $\mathrm{Spec} A$. Note that $\pi_* ( A[ \mathbb{Z}]) = (\pi_* A) [ \mathbb{Z}]$. Also, the map $\pi_0 G_m \to \pi_0 \mathrm{Spec} A$ is smooth of relative dimension 1. \hypertarget{preorientations_of_}{}\subsection*{{Preorientations of $G_m$}}\label{preorientations_of_} \textbf{Proposition} For any $E_\infty$-ring $A$, we have a bijection (of sets) between preorientations of $G_m$ and maps $\mathbf{S} [ \mathbb{C} P^\infty ] \to A$. The proof follows from the fact that $\mathbf{S}$ is initial in the category of $E_\infty$-rings and the mapping property of $A [ \mathbb{Z}]$. \textbf{Corollary} $\mathrm{Spec} \mathbf{S} [ \mathbb{C} P^\infty ]$ is the moduli space of preorientations of $G_m$. That is, if $G_m$ is defined over $\mathrm{Spec} A$, then a preorientation of $G_m$ is the same as a map $\mathrm{Spec} A \to \mathrm{Spec} \mathbf{S} [ \mathbb{C} P^\infty ]$. \hypertarget{orientations_of_}{}\subsection*{{Orientations of $G_m$}}\label{orientations_of_} We consider the map $\beta : \omega \to \pi_2 A$ where \begin{displaymath} \omega = i^* \Omega^1_{\pi_0 G / \pi_0 \mathrm{Spec} A} \end{displaymath} and $i$ is the identity section. Note that $\pi_0 G_m = (\pi_0 A ) [t, t^{-1}]$, hence it follows that $\omega$ is canonically trivial, so an orientation is just an element $\beta_\sigma \in \pi_2 A$ such that $\beta_\sigma$ is invertible in $\pi_* A$. Let $\beta$ denote the (universal) orientation of $\mathbf{S} [ \mathbb{C} P^\infty]$. Then we have the following. \textbf{Theorem} $\mathrm{Spec} \mathbf{S} [ \mathbb{C} P^\infty] [ \beta^{-1}]$ is the moduli space of orientations of $G_m$. It is a theorem of Snaith, that this moduli space has the homotopy type of $KU$ the spectrum of complex K-theory. Note that by considering the homtopy fixed points of a certain action there is a way to recover $KO$ as well. \hypertarget{connection_to_complex_orientation}{}\subsection*{{Connection to complex orientation}}\label{connection_to_complex_orientation} Let $A$ be an $E_\infty$-ring, so in particular $A$ defines a cohomology theory. An orientation of $G_m$ over $\mathrm{Spec} A$ is a map $KU \to A$. A complex orientation of $A$ is a map $MU \to A$. Recalling that $KU$ is complex oriented, we see that an orientation of $G_m$ gives a complex orientation by precomposing with the map $MU \to KU$. \hypertarget{the_additive_derived_group_scheme}{}\section*{{The Additive Derived Group Scheme}}\label{the_additive_derived_group_scheme} The naive definition of $G_a$ is $\mathbf{A}^1$, where $\mathbf{A}^1 (A)$ is the additive group of $A$. It is true that $\mathbf{A}^1$ is a [[derived scheme]] over $\mathrm{Spec} \mathbf{S}$, however it is not flat as for an $E_\infty$-ring $A$ \begin{displaymath} \pi_k \mathbf{A}^1_A = \oplus_{n \ge 0} A^{-k} (B \Sigma_n ) \end{displaymath} where as if it were flat we would have \begin{displaymath} \pi_k \mathbf{A}^1_A = \pi_k A [x] . \end{displaymath} Also, $\mathbf{A}^1$ is not commutative. $\mathbf{A}^1 (A)$ is an infinite loop space, but not an Abelian monoid. Again $\mathbf{A}^1$ is a derived group scheme when restricted to rational $E_\infty$-rings. We no restrict to the category of integral $E_\infty$-rings, i.e. those equipped with a map $H \mathbb{Z} \to A$. Note that in this category $H \mathbb{Z}$ is initial. \textbf{Definition} For $A$ an integral $E_\infty$-ring define \begin{displaymath} G^A_a = \mathrm{Spec} ( A \otimes_\mathbb{Z} \mathbb{Z} [x] ). \end{displaymath} It can be shown that $G^A_a$ is flat and has the correct amount of commutativity. \begin{quote}% Why can't we just use $\mathrm{Spec} A [ \mathbb{N}]$? \end{quote} \textbf{Proposition} For all integral $E_\infty$-rings, preorientations of $G_a^A$ are in bijective correspondence with maps $H \mathbb{Z} [ \mathbb{C} P^\infty] \to A$. Consequently, $\mathrm{Spec} H \mathbb{Z} [ \mathbb{C} P^\infty]$ is the moduli space of preorientations of $G_a$. Now, $\pi_* H \mathbb{Z} [ \mathbb{C} P^\infty] = H_* (\mathbb{C} P^\infty , \mathbb{Z} )$. The right side is a free divided power series on a generator $\beta$ where $\beta \in \pi_2 H \mathbb{Z} [ \mathbb{C} P^\infty]$. \textbf{Proposition} $\mathrm{Spec} H \mathbb{Z} [ \mathbb{C} P^\infty ] [ \beta^{-1}]$ is the moduli space of orientations of $G_a$. \textbf{Proposition} $\mathrm{Spec} H \mathbb{Z} [ \mathbb{C} P^\infty ] [ \beta^{-1}] = KU \otimes \mathbb{Q}$. Hence the Chern character yields an isomorphism with rational periodic cohomology. \end{document}