\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - descent ss and coefficients} [[!redirects A Survey of Elliptic Cohomology - compactifying the derived moduli space]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \begin{quote}% \textbf{Abstract} This entry discusses the [[descent spectral sequence]] and sheaves in homotopy theory. Using said spectral sequence we compute $\pi_* tmf_{(3)}$. \end{quote} This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] \end{itemize} see there for background and context. Here are the entries on the previous sessions: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - cohomology theories]] \item [[A Survey of Elliptic Cohomology - formal groups and cohomology]] \item [[A Survey of Elliptic Cohomology - E-infinity rings and derived schemes]] \item [[A Survey of Elliptic Cohomology - elliptic curves]] \item [[A Survey of Elliptic Cohomology - equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - derived group schemes and (pre-)orientations]] \item [[A Survey of Elliptic Cohomology - A-equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - the derived moduli stack of derived elliptic curves]] \item [[A Survey of Elliptic Cohomology - towards a proof]] \item [[A Survey of Elliptic Cohomology - compactifying the derived moduli stack]] \end{itemize} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{the_descent_spectral_sequence}{}\section*{{The Descent Spectral Sequence}}\label{the_descent_spectral_sequence} \noindent\hyperlink{the_spectral_sequence}{The spectral sequence}\dotfill \pageref*{the_spectral_sequence} \linebreak \noindent\hyperlink{recalling_what_is_what}{Recalling what is what}\dotfill \pageref*{recalling_what_is_what} \linebreak \noindent\hyperlink{the_nonderived_descent_ss}{The non-derived descent ss}\dotfill \pageref*{the_nonderived_descent_ss} \linebreak \noindent\hyperlink{stacks_and_hopf_algebroids}{Stacks and Hopf Algebroids}\dotfill \pageref*{stacks_and_hopf_algebroids} \linebreak \noindent\hyperlink{cohomology_of_sheaves}{Cohomology of Sheaves}\dotfill \pageref*{cohomology_of_sheaves} \linebreak \noindent\hyperlink{change_of_rings}{Change of Rings}\dotfill \pageref*{change_of_rings} \linebreak \noindent\hyperlink{the_weierstrass_stack}{The Weierstrass Stack}\dotfill \pageref*{the_weierstrass_stack} \linebreak \noindent\hyperlink{local_coefficients}{$p$-local Coefficients}\dotfill \pageref*{local_coefficients} \linebreak \noindent\hyperlink{with_6_inverted}{With 6 inverted}\dotfill \pageref*{with_6_inverted} \linebreak \noindent\hyperlink{localized_at_3}{Localized at 3}\dotfill \pageref*{localized_at_3} \linebreak \hypertarget{the_spectral_sequence}{}\subsection*{{The spectral sequence}}\label{the_spectral_sequence} We would like to understand the following theorem. \textbf{Theorem.} Let $( X, \mathbf{O})$ be a derived Deligne-Mumford stack. Then there is a spectral sequence \begin{displaymath} H^s (X ; \pi_t \mathbf{O}) \Rightarrow \pi_{t-s} \Gamma (X , \mathbf{O}). \end{displaymath} \hypertarget{recalling_what_is_what}{}\subsubsection*{{Recalling what is what}}\label{recalling_what_is_what} Let $X$ be an $\infty$-topos, heuristically $X$ is `'sheaves of spaces on an $\infty$-category $C$.'` Further $\mathbf{O}$ is a functor $\mathbf{O} : \{ E_\infty \}^{op} \to X$, which for a cover $U$ of $C$ formally assigns \begin{displaymath} A \mapsto (U \mapsto \mathrm{Hom} (A , \mathbf{O} (U))). \end{displaymath} Via DAG V 2.2.1 we can make sense of global sections and $\Gamma (X , \mathbf{O})$ is an $E_\infty$-ring. Given an $\infty$-category $C$ we can form the subcategory of $n$ \emph{truncated objects} $\tau_{\le n} C$ which consists of all objects such that all mapping spaces have trivial homotopy groups above level $n$. Further $\tau_{\le n} : C \to C$ defines a functor which serves the role of the Postnikov decomposition. Let $X$ be an $\infty$-topos, define $\mathrm{Disc} \; X : = \tau_{\le 0} X$. Further define functors $\pi_n : X_* \to N (\mathrm{Disc} \; X)$ by \begin{displaymath} Y \mapsto \tau_{\le 0} \mathrm{Map} (S^n , Y) = \pi_n (Y) . \end{displaymath} \textbf{Facts.} \begin{enumerate}% \item For $A \in \mathrm{Disc} \; X$ an abelian group object there exists $K(A,n) \in X$, such that \begin{displaymath} H^n (X, A) := \pi_0 \mathrm{Map} (1_X , K(A,n)) \end{displaymath} corresponds to sections of $K(A,n)$ along the identity of $C$. \item If $C$ is an ordinary site, $H^n (X, A)$ corresponds to ordinary sheaf cohomology (HTT 7.2.2.17). \end{enumerate} \hypertarget{the_nonderived_descent_ss}{}\subsubsection*{{The non-derived descent ss}}\label{the_nonderived_descent_ss} Let us define a mapping space $\mathrm{Tot} \; X = \mathrm{hom}^\Delta (\Delta , X)$, this is the hom-set as simplicial objects. Now \begin{displaymath} \mathrm{Tot} \; X = \lim ( \dots \to \mathrm{Tot}^n \; X \to \mathrm{Tot}^{n-1} \; X \to \dots \to \mathrm{Tot}^0 \to * ) , \end{displaymath} where $\mathrm{Tot}^n \; X = \mathrm{Tot} (\mathrm{cosk}_n X )$. We have a homotopy cofiber sequence \begin{displaymath} F_n \to \mathrm{Tot}^n \; X \to \mathrm{Tot}^{n-1} \; X \end{displaymath} and it is a fact that \begin{displaymath} F_s \simeq \Omega^s ( \prod_{|I|=s+1} \mathbf{O} (U_I )), \end{displaymath} for the fibered product $U_I$ corresponding to the cover $\{ U_i \to N\}$ of an object $N$ of the etale site of $M_{1,1}$. Applying $\pi_*$ to the cofiber sequence we obtain an exact couple and hence a spectral sequence with \begin{displaymath} E^1_{t,s} = \pi_{t-s} F_s \Rightarrow \lim_n \pi_{t-s} \mathrm{Tot}^n X = \pi_{t-s} \mathrm{Tot} X = \pi_{t-s} \mathbf{O} (N). \end{displaymath} Note that $\pi_{t-s} F_s$ is the ech complex of the cover, so the $E^2$-page calculates ech cohomology. If we choose an affine cover, hence acyclic and $\lim^1 =0$, then \begin{displaymath} E^2_{t,s} \Rightarrow H^s (N, \pi_t \mathbf{O}) . \end{displaymath} \hypertarget{stacks_and_hopf_algebroids}{}\subsection*{{Stacks and Hopf Algebroids}}\label{stacks_and_hopf_algebroids} Let $X$ be a (non-derived) Deligne-Mumford stack on $\mathrm{Aff}$ and let $\mathrm{Spec} \; A \to X$ be a faithfully flat cover, then \begin{displaymath} \mathrm{Spec} \; A \times_X \mathrm{Spec} \; A = \mathrm{Spec} \; \Gamma, \end{displaymath} for some commutative ring $\Gamma$. Via the projection maps (which are both flat) we have a groupoid in $\mathrm{Aff}$, by definition it is a [[commutative Hopf algebroid]] $(A, \Gamma)$. Now let $(A,\Gamma)$ be a commutative Hopf algebroid, then the collection of principal bundles form a stack $M_{A,\Gamma}$. Here a principal bundle is a map of schemes $P \to X$, a $\mathrm{Spec} \; \Gamma$ equivariant map $P \to \mathrm{Spec} \; A$, where the action is given by a map $P \times_{\mathrm{Spec} A} \mathrm{Spec} \; \Gamma \to P$. In this we have an equivalence of 2-categories \begin{displaymath} \{DM \; Stacks\} \simeq \{Hopf \; Algebroids, \; bibundles\} . \end{displaymath} and \begin{displaymath} \{DM \; stacks \; equipped \; with \; cover\} \simeq \{Hopf \; algebroids, \; functors \; of \; groupoids\}. \end{displaymath} Let $X$ be a scheme then a sheaf of abelian groups is a functor \begin{displaymath} \mathfrak{I} : \mathrm{Aff}/X^{op} \to \mathrm{Ab} . \end{displaymath} The structure sheaf $\mathbf{O}_X$ is defined by \begin{displaymath} \mathbf{O}_X ( \mathrm{Spec} \; A \to X) = A . \end{displaymath} Let $\mathfrak{I}$ be a sheaf of $\mathbf{O}_X$ modules. $\mathfrak{I}$ is quasi-coherent if for any map $\mathrm{Spec} \; B \to \mathrm{Spec} \; A$ and maps $f: \mathrm{Spec} \; A \to X$, $g: \mathrm{Spec} \; B \to X$ we have \begin{displaymath} B \otimes_{A} \mathfrak{I} (f) \simeq \mathfrak{I} (g) . \end{displaymath} We have an equivalence of categories $\mathrm{QCSh}/\mathrm{Spec} \; A \simeq A$-mod via the assignment $\mathfrak{I} \mapsto \mathfrak{I} (1_A)$. Now consider the stack $M_{A,\Gamma}$ from above. One can show that quasi-coherent sheaves over $M_{A, \Gamma}$ is nothing but a $(A,\Gamma)$ [[comodule]], that is an $A$-module, $M$, and a coaction map of $A$-modules \begin{displaymath} M \to \Gamma \otimes^{d_1}_{A} M \end{displaymath} where the right hand side is an $A$-module via the map $d_0$. \hypertarget{cohomology_of_sheaves}{}\subsection*{{Cohomology of Sheaves}}\label{cohomology_of_sheaves} Recall that sheaf cohomology is obtained by deriving the global sections functor. If $X$ is a [[noetherian scheme|noetherian]] scheme/stack then we restrict to deriving \begin{displaymath} \Gamma (-) : \mathrm{QCSh}/X \to \mathrm{Ab} . \end{displaymath} Suppose further that $X = \mathrm{Spec} \; A$, so $\Gamma$ lands in $A$-modules, however from above we know $\mathrm{QCSh}/\mathrm{Spec} \; A \simeq A$-mod, hence $\Gamma$ is exact and all higher cohomology groups vanish. Let $\mathfrak{I}_N$ be a quasi-coherent sheaf on a DM stack $M_{A,\Gamma}$. Then global sections of $\mathfrak{I}_N$ induce global sections $n \in N$ such that the two pullbacks to $\Gamma$ correspond to each other \begin{displaymath} \Gamma \otimes_A^{d_0} N \to \Gamma \otimes_A^{d_1} N; \; 1 \otimes n \mapsto 1 \otimes n . \end{displaymath} That is the coaction map $n \mapsto 1 \otimes n$ is well defined and $n: A \to N; \; 1 \mapsto n$ is a map of comodules. This allows us to interpret global sections as \begin{displaymath} \mathrm{Hom}_{A,\Gamma} (A, -) : \mathrm{Comod}_{A,\Gamma} \to A-\mathrm{mod} , \end{displaymath} so a section is a map from the trivial sheaf to the given sheaf. It follows that \begin{displaymath} H^n ( M_{A,\Gamma} , \mathfrak{I}_N ) = \mathrm{Ext}^n_{A,\Gamma} (A,N) . \end{displaymath} To simplify notation we write the above as $H^n (A, \Gamma ; N)$ and if the $N$ is suppressed it is assumed that $N=A$. In general we compute these Ext groups via the [[cobar complex]]. \hypertarget{change_of_rings}{}\subsubsection*{{Change of Rings}}\label{change_of_rings} Let $(A,\Gamma)$ be a commutative Hopf algebroid and $f: A \to B$ a ring homomorphism. Define \begin{displaymath} \Gamma_B = B \otimes_A^{d_0} \Gamma \otimes_A^{d_1} B , \end{displaymath} so we have a map of Hopf algebroids $f_* : (A, \Gamma) \to (B, \Gamma_B)$ and of stacks \begin{displaymath} f^* : M_{B,\Gamma_B} \to M_{A,\Gamma} . \end{displaymath} \textbf{Theorem.} If there exists a ring $R$ and a homomorphism $\Gamma \otimes_A B \to R$ such that \begin{displaymath} A \to \Gamma \otimes_A B \to R \end{displaymath} is faithfully flat, then $f^*$ is an equivalence of stacks. \hypertarget{the_weierstrass_stack}{}\subsubsection*{{The Weierstrass Stack}}\label{the_weierstrass_stack} Given $C/S$ an [[elliptic curve]], [[Riemann-Roch theorem|Riemann–Roch]] gives us (locally on $S$) sections $x \in \Gamma (C, \mathbf{O} (2e)) , \; y \in \Gamma (C, \mathbf{O} (3e))$ such that $x^3-y^2 \in \Gamma (C, \mathbf{O}(5e))$ and $C \simeq C_{\underline{a}} \subset \mathbb{P}^2$ is given by \begin{displaymath} y^2 + a_1 xy + a_3 y = x^3 +a_2 x^2 +a_4 X + a_6 \end{displaymath} for $a_i \in \mathbf{O}_S$ and $e = [0: 1:0]$. Such a curve is said to be in Weierstrass form or simply a Weierstrass curve. Two Weierstrass curves $(C_\underline{a} , e)$ and $(C_{\underline{a}'},e)$ are isomorphic if and only if they are related by a coordinate change of the form \begin{displaymath} (X,Y) \mapsto (\lambda^{-2} X + r, \lambda^{-3} y + s \lambda^{-2} x +t ) . \end{displaymath} For instance, this means that $a_1'= \lambda (a_1 +2s)$. We then build a Hopf algebroid $(A, \Gamma)$ by defining \begin{displaymath} A = \mathbb{Z} [a_1 , \dots , a_4 , a_6 ] , \; \Gamma = A [r,s,t, \lambda^\pm ] . \end{displaymath} Further, define the stacks $M_{Weir} = M_{A, \Gamma}$ and $M_{ell} = M_{A[\Delta^{-1}] , \Gamma[\Delta^{-1}]}$. Note that \begin{displaymath} M_{ell} \subset \overline{M_{ell}} \subset M_{Weir} . \end{displaymath} Let $\omega_{C/S} = \pi_* \Omega^1_{C/S}$ (which is locally free) and $\pi_{2n} \mathbf{O} = \omega^n$. If $C$ is a Weierstrass curve, then $\omega$ is free with generator of degree 2 \begin{displaymath} \eta = \frac{dx}{2y + a_1 x +a_3} . \end{displaymath} Let $\omega^*$ correspond to the graded comodule \begin{displaymath} A_* = A [ \eta^\pm ] \to \Gamma [\eta^\pm ] = \Gamma_* ; \; \eta \mapsto \lambda^{-1} \eta . \end{displaymath} It is classical that \begin{displaymath} H^{0,*} (A, \Gamma ; A_*) = \mathbb{Z} [c_4 , c_6 , \Delta]/ (12^3 \Delta -c_4^3 +c_6^2 ) \end{displaymath} that is the ring of modular forms. So we get a map \begin{displaymath} \pi_* tmf \to \{modular \; forms \} \end{displaymath} as the edge homomorphism of our spectral sequence \begin{displaymath} H^{s,t} (A,\Gamma ; A_*) \simeq H^{s,t} (A_* , \Gamma_*) \Rightarrow \pi_{t-s} tmf . \end{displaymath} It should be noted that we have a comparison map with the Adams-Novikov spectral sequence for $MU$. \hypertarget{local_coefficients}{}\subsection*{{$p$-local Coefficients}}\label{local_coefficients} \hypertarget{with_6_inverted}{}\subsubsection*{{With 6 inverted}}\label{with_6_inverted} Note that if 2 is invertible than we can complete the square in the Weierstrass equation to obtain \begin{displaymath} \overline{y}^2 = x^3 + 1/4 b_2 x^2 + 1/2 b_4 x + 1/4 b_6 \end{displaymath} and the only automorphisms of the curve are $x \mapsto x+r$. Now if 3 is invertible we complete the cube and have \begin{displaymath} \overline{y}^2 = \overline{x}^3 -1/48 c_4 \overline{x} -1/864 c_6 \end{displaymath} and this curve is rigid. Define $C= \mathbb{Z} [c_4 , c_6 ]$ and $\Gamma_C = C$, then \begin{displaymath} H^{s,*} (A_* , \Gamma_* ) [1/6] \simeq H^{s,*} (C,C) [1/6] = \mathbb{Z} [1/6 , c_4 , c_6 ] \end{displaymath} if $s=0$ and 0 otherwise. \hypertarget{localized_at_3}{}\subsubsection*{{Localized at 3}}\label{localized_at_3} It is true that $H^{s,t} (A_* , \Gamma_* ) = H^{s,t} (B, \Gamma_B)$ where \begin{displaymath} B = \mathbb{Z}_{(3)} [ b_2 , b_4, b_6 ] \to \Gamma_B = B[r] ; \; b_2 \mapsto b_2 + 12r \end{displaymath} and the degree of $r$ is 4. We have the class $\alpha = [r] \in H^{1,4}$ and $\beta = [ -1/2 (r^2 \otimes r + r \otimes r^2)] \in H^{2,12}$. Let $I = (3 , b_2 , b_4 )$ and consider the Hopf algebroid $(B/I , \Gamma_B /I)$ which by change of rings theorem is equivalent to $(\mathbf{F}_3 , \mathbf{F}_3 [r]/(r^3))$. A spectral sequence obtained by filtering by powers of $I$ gives: \textbf{Theorem.} $H^{*,*} (B, \Gamma_B) = \mathbb{Z} [c_4 , c_6 , \Delta , \alpha, \beta ]$ subject to the following relations \begin{enumerate}% \item $12^3 \Delta -c_4^3 +c_6^2 = \alpha^2 = 3\alpha = 3 \beta =0;$ \item $c_4 \alpha = c_6 \alpha = c_4 \beta = c_6 \beta = 0.$ \end{enumerate} By using the comparison map with the Adams-Novikov spectral sequence one can prove the following theorem. \textbf{Theorem.} The edge homomorphism $\pi_* tmf_{(3)} \to \{Modular Forms\}_{(3)}$ has \begin{enumerate}% \item Cokernel given by $\mathbb{Z}/3\mathbb{Z} [\Delta^n]$ for $n \ge 0$ and not divisble by 3; \item Kernel consisting a copy of $\mathbb{Z}/3\mathbb{Z}$ in degrees 3,10,13,20,27,30,37,40 modulo 72. This is the 3-torsion in $\pi_* tmf$. \end{enumerate} For more see [[Tilman Bauer]], \textbf{Computation of the homotopy of the spectrum tmf}. In \emph{Geom. Topol. Monogr}., 13, 2008. \end{document}