\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - equivariant cohomology} This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]]. \end{itemize} See there for background and context. This entry considers [[equivariant cohomology]] from the perspective of algebraic geometry. Previous: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - cohomology theories]] \item [[A Survey of Elliptic Cohomology - formal groups and cohomology]] \item [[A Survey of Elliptic Cohomology - E-infinity rings and derived schemes]] \item [[A Survey of Elliptic Cohomology - elliptic curves]] \end{itemize} Next: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - derived group schemes and (pre-)orientations]] \item [[A Survey of Elliptic Cohomology - A-equivariant cohomology]] \end{itemize} \begin{quote}% the following are rough unpolished notes taken more or less verbatim from some seminar talk -- needs attention, meaning: \textbf{somebody should go through this and polish} \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{notions_of_equivariant_cohomology}{Notions of equivariant cohomology}\dotfill \pageref*{notions_of_equivariant_cohomology} \linebreak \noindent\hyperlink{borel_equivariant_cohomology}{Borel equivariant cohomology}\dotfill \pageref*{borel_equivariant_cohomology} \linebreak \noindent\hyperlink{grothendieck_ring_of_equivariant_vector_bundles}{Grothendieck ring of equivariant vector bundles}\dotfill \pageref*{grothendieck_ring_of_equivariant_vector_bundles} \linebreak \noindent\hyperlink{algebraic_interpretation}{algebraic interpretation}\dotfill \pageref*{algebraic_interpretation} \linebreak \noindent\hyperlink{group_schemes}{group schemes}\dotfill \pageref*{group_schemes} \linebreak \noindent\hyperlink{lesson}{lesson}\dotfill \pageref*{lesson} \linebreak \hypertarget{introduction}{}\section*{{Introduction}}\label{introduction} The slogan is: for $A$ a [[cohomology theory]], finding [[equivariant cohomology]] $A$-theory corresponds to finding [[group scheme]] over $A({*})$. The main example we'll be looking at here is complex [[K-theory]]. \hypertarget{notions_of_equivariant_cohomology}{}\section*{{Notions of equivariant cohomology}}\label{notions_of_equivariant_cohomology} \hypertarget{borel_equivariant_cohomology}{}\subsection*{{Borel equivariant cohomology}}\label{borel_equivariant_cohomology} \textbf{Remark} if $A_G$ is an [[equivariant cohomology]] theory and if $Y \to X$ is a $G$-[[principal bundle]] then we want that $A_G(Y) \simeq A(X)$. So whenever we have a $G$-space where the $G$-[[action]] is free enough. Let $X$ be a $G$-space, form the [[Borel construction]] $\mathcal{E}G \times_G X$ with $\mathcal{E}G \to \mathcal{B}G$ the [[universal principal bundle]]. Then we can \emph{define} \begin{displaymath} A_G^{Borel}(X) := A(\mathcal{E}G \times_G X) \,. \end{displaymath} \begin{quote}% notice that $\mathcal{E}G \times_G X$ is the realization of the [[action groupoid]] $X//G$. This Borel equivariant cohomology theory is what is discussed currently at the entry [[equivariant cohomology]]. The following will actually define a refinement of the discussion currently at [[equivariant cohomology]]. \end{quote} \textbf{Problem} If the cohomology theory is given by a geometric model, such as [[topological K-theory]] in terms of [[vector bundle]]s or [[elliptic cohomology]] potentially in a [[geometric model for elliptic cohomology]], then the above notion of equivariant cohomology need not coincide with the cohomology theory given by the equivariant version of these geometric models. In particular, equivariant [[vector bundle]]s are geometric cocycles of equivariant [[K-theory]] $K_G$ and there is a morphism \begin{displaymath} K_G(X) \to K_G^{Borel}(X) \end{displaymath} but it is not an [[isomorphism]]. Instead, $K_G$ is a \emph{completion} of $K_G^{Bor}$. Here $K_G(X)$ is the [[Grothendieck group]] of [[equivariant vector bundle]]s over the [[G-space]] $X$ (say $G$ is a compact [[Lie group]]). \hypertarget{grothendieck_ring_of_equivariant_vector_bundles}{}\subsection*{{Grothendieck ring of equivariant vector bundles}}\label{grothendieck_ring_of_equivariant_vector_bundles} \textbf{Definition} An [[equivariant vector bundle]] over $X$ is \begin{itemize}% \item a [[G-space]] $E$ and $G$-equivariant map $p : E \to X$ such that this is a (complex, here) [[vector bundle]] of finite rank \item for each $g \in G$ the map $g : E_x \to E_{g x}$ is linear. \end{itemize} Morephism are the obvious $G$-equivariant morphisms of [[vector bundle]]s. \emph{examples*} \begin{enumerate}% \item $X$ a trivial $G$-space,then a $G$-equivariant vector bundle is a family of complex representations; \item for $E \to X$ a [[vector bundle]] the $k$th tensor power of $E$ is a $\Sigma_k$-equivariant vector bundle; \item if $G$ acts smoothly on $X$ then the complexified [[tangent bundle]] $T X \otimes \mathbb{C} \to X$ is a $G$-equivariant vector bundle. \end{enumerate} \textbf{remark} The [[category]] of $G$-[[equivariant vector bundle]], has \begin{itemize}% \item [[direct sum]] $\oplus$ \item [[tensor product]] $\otimes$ \end{itemize} And we can pull back $Vect^G$ $\backslash$to $Vecg^H$ along any group homomorphism $\phi : H \to G$ So we are entitled to say \textbf{definition} the [[Grothendieck group]] of $Vect^G(X)$ is \begin{displaymath} K_G(X) := Groth(E \to X, \oplus) \,. \end{displaymath} With the remaining [[tensor product]] $\otimes$ this yields a commutative [[ring]]. \textbf{proposition} \begin{enumerate}% \item if $X = pt$ then $K_G(X) \simeq Rep(G)$ is the [[representation ring]] of $G$. \begin{enumerate}% \item in general, $K_G(X)$ is an algebra over $Rep(G)$. \end{enumerate} \item if $G$ [[free action|acts freely]] on $X$, then $K_G(X) \simeq K(X/G)$. \end{enumerate} So in particular \begin{displaymath} K(\mathcal{E}G \times_G X) \simeq K_G(\mathcal{E}G \times X) \end{displaymath} so we get a map \begin{displaymath} \alpha : K_G(X) \to K_G(\mathcal{E}G \times X) \simeq K(\mathcal{E}G \times_G X) := K_G^{Borel}(X) \end{displaymath} \textbf{theorem} (Atiyah-Segal) This $\alpha$ induces an [[isomorphism]] \begin{displaymath} \hat K_G(X) \simeq K_G^{Borel}(X) \end{displaymath} where \begin{displaymath} \hat K_G(X) := \lim_\leftarrow K_G(X)/I_G^n K_G(X) \end{displaymath} where $I_G = ker(Rep(G) \simeq K_G({*}) \to K_G(\mathcal{E}G) \simeq K(\mathcal{B}G) \stackrel{\epsilon}{\to} \mathbb{Z})$ \textbf{consider} $X = {*}$, $G = S^1$, $\mathbb{C}P^\infty \simeq \mathcal{B}S^1$ \begin{displaymath} \alpha : Rep(G) \to K(\mathcal{B}G) = K(\mathbb{C}P^\infty) \simeq \mathbb{Z}[ [ t ] ] \end{displaymath} \begin{enumerate}% \item since $S^1$ is an abelian group, every [[irreducible representation]] is 1-dimensional \begin{displaymath} \phi : S^1 \to \mathbb{C}^\times \end{displaymath} \item $\chi : S^1 \hookrightarrow \mathbb{C}^times$ \end{enumerate} \begin{displaymath} Rep(G) \simeq \mathbb{Z}[\chi, \chi^{-1}] \,. \end{displaymath} \hypertarget{algebraic_interpretation}{}\subsection*{{algebraic interpretation}}\label{algebraic_interpretation} \textbf{goal now} find an algebraic interpretation of $\alpha$ such that \begin{displaymath} Rep(S^1) = \mathcal{o}_{G_m} \end{displaymath} and \begin{displaymath} Rep(\mathbb{C}P^\infty) = \mathcal{o}_{\hat G_m} \end{displaymath} adopt the [[functor of points]] perspective \begin{displaymath} X : CRings \to Set \end{displaymath} a [[functor]]. For $A \in$ [[CRing]] get a spectrum \begin{displaymath} Spec A : R \mapsto CRing(A,R) \end{displaymath} for $X$ a functor, it is an [[affine scheme]] if it is a [[representable functor]] in that there is $A$ with $X \simeq Spec A$. \textbf{examples} \begin{enumerate}% \item $\mathbf{A}^n(R) := R^n$ \item $\hat \mathbf{A}^n(R) := Nil(R)^n$ \item $G_m(R) := R^\times \hookrightarrow \mathbf{A}^1(R)$ \item $\mathbb{P}^n(R) := R^{n+1}/\sim$, where $\sim$ is multiplication by $R^\times$ \end{enumerate} \textbf{proposition} $G_m$ is affine. \textbf{proof} $A = \mathbb{Z}[x,x^{-1}]$, let $u \in Spec(\mathbf{A}(R))$ a map $u A \to R$, then define \begin{displaymath} \phi : Spec A \to G_m \end{displaymath} by \begin{displaymath} u \mapsto u(x) \end{displaymath} Conversely, given $v \in G_m(R) = R^\times$, define \begin{displaymath} \Psi : G_m \to Spec A \end{displaymath} by \begin{displaymath} v \mapsto \Psi(v) \end{displaymath} with \begin{displaymath} \Psi(v)(\sum_k a_k x^k) := \sum_k a_k v^k \end{displaymath} \textbf{endofproof} similarly, $\mathbf{A}^n \simeq Spec \mathbb{Z}[x_1, \cdots, x_n]$ \hypertarget{group_schemes}{}\section*{{group schemes}}\label{group_schemes} Given a functor $X : CRing \to Set$ define the ring of funtions $\mathcal{o}_X$ as \begin{displaymath} \mathcal{o}_X := Hom_{Func(CRing,Set)}(X, \mathbf{A}^1) \end{displaymath} in the [[functor category]]. \begin{quote}% notice notation: this is global sectins of the [[structure sheaf]], not the structure sheaf itself, properly speaking \end{quote} we have \begin{displaymath} \mathcal{o}_{Spec A} \simeq A \end{displaymath} so that in particular \begin{displaymath} \mathcal{o}_{G_m} \simeq \mathbb{Z}[x,x^{-1}] \,. \end{displaymath} \textbf{definition} Let $X$ be an [[affine scheme]] and $Y : CRing \to Set$ a [[functor]] with a [[natural transformation]] $p : Y \to X$. A \textbf{system of formal coordinates} is a sequence of maps \begin{displaymath} X_i : Y \to \hat \mathbf{A}^1 \end{displaymath} such that \begin{displaymath} a \mapsto (x_1(a), \cdots, x_n(a), p(a)) \in \hat \mathbf{A}^n \times X \end{displaymath} is an [[isomorphism]]. A $Y$ that admits a system of formal coordinates is a \textbf{[[formal scheme]]} over $X$. \begin{quote}% \textbf{warning} very restrictive definition. See [[formal scheme]] \end{quote} A \textbf{[[formal group]]} $G$ over a [[scheme]] $X$ is a one-dimensional [[formal scheme]] with specified abelian [[group]] structure on each [[fiber]] $p^{-1}\{x\}$. This means that there is a natural map \begin{displaymath} \sigma : G \times_X G \to G \end{displaymath} and a natural map $\zeta : X \to G$ which maps $x \mapsto 0 \in p^{-1}\{x\}$. \textbf{definition (formal multiplicative group)} define $\hat G_m$ on each $R \in CRing$ by \begin{displaymath} \hat G_m(R) = \left\{ 1+n | n \in Nil(R) \right\} \end{displaymath} which is a group under multiplication. there is an [[isomorphism]] of underlying [[formal scheme]]s \begin{displaymath} \hat G_m \simeq \hat \mathbf{A}^1 \end{displaymath} We compute $\mathcal{o}_{\hat \mathbf{A}^1} \simeq \mathcal{o}_{\hat G_m}$ in two ways: \begin{enumerate}% \item Recall that $\hat \mathbf{A}^1$ can be defined as $Spf \; \mathbb{Z} [t]$, so the global sections of the structure sheaf (which is what we have been calling $\mathcal{o}$) is \begin{displaymath} \mathcal{o}_{\hat \mathbf{A}^1} = \lim_\rightarrow \mathbb{Z}[t]/ (t^n) = \mathbb{Z} [[t]] . \end{displaymath} \item We can also see this in the functor of points perspective. Consider the functor $\mathrm{Spec} \; \mathbb{Z} [t]/ (t^n)$, then for any ring $R$ \$$\hat \mathbf{A}^1 (R) = \lim_\rightarrow \mathrm{Spec} \; \mathbb{Z} [t]/ (t^n) (R).$\$ By the universal property of colimits we have \begin{displaymath} \mathrm{Nat} (\hat \mathbf{A}^1 , \mathbf{A}^1 ) \simeq \lim_\leftarrow \mathrm{Nat} (\mathrm{Spec} \; \mathbb{Z}[t]/ (t^n) , \mathbf{A}^1) \simeq \mathbb{Z} [[t]]. \end{displaymath} \end{enumerate} \begin{displaymath} \mathcal{o}_{\hat G_m} \simeq \mathbb{Z}[ [ t] ] \,. \end{displaymath} \textbf{recall} we have a morphism $\alpha : Rep(S^1) \to K(\mathbb{C}P^\infty)$ such that \begin{displaymath} \mathcal{o}_{G_m} \simeq \mathbb{Z}[x,x^{-1}] \simeq Rep(S^1) \to K(\mathbb{C}P^\infty) \simeq \mathbb{Z}[ [ t ] ] \simeq \mathcal{o}_{\hat G_m} \end{displaymath} is the canonical inclusion \begin{displaymath} \mathcal{o}_{G_m} \to \mathcal{o}_{\hat G_m} \end{displaymath} \textbf{exercise} \begin{displaymath} x \in \mathbb{Z}[x,x^{-1}] \simeq \mathcal{o}_{G_m} \end{displaymath} is the natural transformation $R^\times \to R$ and \begin{displaymath} t \in \mathbb{Z}[ [t] ] \simeq \mathcal{o}_{\hat G_m} \end{displaymath} is the natural transformation \begin{displaymath} \{1 + Nil(R)\} \to Nil(R) \to R \end{displaymath} so that we get a map \begin{displaymath} \mathcal{o}_{G_m} \to \mathcal{o}_{\hat G_m} \end{displaymath} by sending $x$ to $1 + t$, and this corresponds to taking the [[germ]] of functions at $1 \in G_m$ \hypertarget{lesson}{}\section*{{lesson}}\label{lesson} given $G$ an algebraic group such that the [[formal spectrum]] $Spf A(\mathbb{C}P^\infty)$ is the completion $\hat G$, define $A_{S^1}({*}) := \mathcal{o}_{G}$ then passing to germs gives a completion map \begin{displaymath} A_{S^1}({*}) \to A(\mathbb{C}P^\infty) = A^{Bor}_{S^1}({*}) \end{displaymath} \end{document}