\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - formal groups and cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] \end{itemize} see there for background and context. This entry disscusses basics of [[formal group law]]s arising from [[periodic cohomology theory|periodic]] [[multiplicative cohomology theory|multiplicative]] [[cohomology theory|cohomology theories]] Previous: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - cohomology theories]] \end{itemize} Next: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - E-infinity rings and derived schemes]] \end{itemize} \hypertarget{rough_notes_from_a_talk}{}\subsection*{{rough notes from a talk}}\label{rough_notes_from_a_talk} \begin{quote}% the following are rough unpolished notes taken more or less verbatim from some seminar talk -- needs \textbf{somebody to go through it and polish it} \end{quote} \textbf{Formal groups and elliptic cohomology.} In all of the following, all [[cohomology theory|cohomology theories]] are [[multiplicative cohomology theory|multiplicative]] and all [[formal group law]]s are one-dimensional (and commutative). \textbf{[[A Survey of Elliptic Cohomology - cohomology theories|Last time]].} we saw that orienting a [[periodic cohomology theory|periodic]] [[even cohomology theory]] gives a [[formal group law]] over the [[cohomology ring]] $A^0(\bullet)$. (Note: $A^0$ and not $A^\bullet$ because of the periodicity property.) \textbf{Today} we discuss a generalization of the above statement: orienting a [[weakly periodic cohomology theory|weakly periodic]] [[even cohomology theory]] $A$ gives a [[formal group]] over $A^0(\bullet)$. In particular, [[elliptic cohomology]] theories give [[elliptic curve]]s over $A^0(\bullet)$. \hypertarget{formal_group_laws_and_landwebers_criterion}{}\subsection*{{Formal group laws and Landweber's criterion}}\label{formal_group_laws_and_landwebers_criterion} [[formal group law|Formal group law]]s of dimension $1$ over $R$ are classified by [[morphism]]s from the [[Lazard ring]] to $R$. We can define $A_f^n(X)=MP^n(X)\otimes_{MP(\bullet)}R$. Here $MP$ denotes [[complex cobordism cohomology theory|complex cobordism]], in particular $MP(\bullet)$ is isomorphic to [[Lazard ring|Lazard's ring]]. \textbf{Definition.} A sequence $v_0,\ldots,v_n$ of elements of $R$ is regular if [[endomorphism]]s of $R/(v_0,\ldots,v_{k-1})$ given by multiplication by $v_k$ are injective for all $0\le k\le n$. \textbf{[[Landweber criterion]]} Let $f(x,y)$ be a formal group law and $p$ a prime, $v_i$ the coefficient of $x^{p^i}$ in $[p]_f(x)=x+_f\cdots+_fx$. If $v_0,\ldots,v_i$ form a regular sequence for all $p$ and $i$ then $f(x,y)$ gives a [[cohomology theory]] via the formula with [[tensor product]] above. \textbf{Example.} $g_a(x,y)=x+y$, $[p]_a(x)=px$, $v_0=p$, $v_i=0$ for all $i\ge1$; regularity condtions imply that the zero map $R/(p)\to R/(p)$ must be injective. The last statement implies that $R$ contains the rational numbers as a subring. Note that $HP^*(X,R)=\prod_k H^{n+2k}(X,R)$ is a [[cohomology theory]] over any [[ring]] $R$. \textbf{Example.} $g_m(x,y)=xy$, $[p]_m(x)=(x+1)^p-1$, $v_0=p$, $v_1=1$, $v_i=0$ for all $i \gt 1$. The regularity conditions are trivial. Hence we know that $K^*(X)=MP^*(X)\otimes_{MP(\bullet)} \mathbb{Z}$ is a cohomology theory. \hypertarget{formal_groups_from_formal_group_laws}{}\subsection*{{Formal groups from formal group laws}}\label{formal_groups_from_formal_group_laws} Given a commutative topological $R$-algebra $A$ and a [[formal group law]] $f(x,y)$ if $f(a,b)$ converges for all $a,b\in A$ and the formula giving an inverse to $a$ converges for all $a\in A$, we get an abelian [[group]] $(A,+_f)$, where $a+_f b=f(a,b)$. \textbf{Example.} For any $A$ the pair $(N(A),+_f)$ is an abelian group, where $N(A)$ denotes the set of nilpotent elements of $A$. \textbf{Example.} Let $A$ be an oriented complex oriented cohomology theory. Then computing [[Chern class]]es of [[line bundle]]s is the same as evaluating the formal group law of $A$ on some algebra. Recall that [[line bundle]]s on $X$ are [[classifying space|classified]] by maps from $X$ to $\mathbb{C}P^\infty$, pairs of line bundles are classified by maps to $\mathbb{C}P^\infty \times \mathbb{C}P^\infty$, and tensor product of line bundles gives a map $\mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty$. Now apply cohomology functor to the sequence $X\to \mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty$. We have a degree 0 element $t$ in the cohomology of $\mathbb{C}P^\infty$. Its image in the cohomology of $\mathbb{C}P^\infty \times \mathbb{C}P^\infty$ is a formal group law. The image of this formal group law in the cohomology of $X$ makes sense if $X$ is a finite cell complex so that $A^0(X)$ is a nilpotent algebra. \textbf{Question:} When do two formal group laws yield isomorphic groups? \textbf{Definiton.} A homomorphism of formal group laws $f$ and $g$ over $A$ is a formal power series $\phi\in A[x]$ such that $\phi(f(x,y))=g(\phi(x),\phi(y))$. (The constant term of{\tt \symbol{126}}$\phi$ is zero.) Hence formal group laws form a category. \textbf{Example.} If $R$ contains rational numbers as a subring, then we have two canonical homomorphisms. The first one is $\exp\colon g_a\to g_m$, where $\exp(x)=\sum_{k \gt 0}x^k/k!$. Its inverse is $\log\colon g_m\to g_a$, where $\log(x)=\sum_{k \gt 0}(-1)^{k+1}x^k/k$. This shows up in cohomology as Chern character. (Isomorphism from $K^n(X)\otimes_{\mathbb{Z}} \mathbb{Q}$ to $\prod_kH^{n+2k}(X,\mathbb{Q})$. \textbf{Formal groups.} A [[formal group]] is a group in the [[category]] of [[formal scheme]]s. A [[formal scheme]] $\hat{Y}$ is defined for any [[closed subscheme|closed immersion]] of [[scheme]]s $Y \hookrightarrow X$. Intuitively the [[formal scheme]] $\hat Y$ is the $\infty$-jet bundle in the normal direction of $Y$ inside of $X$. \textbf{Definition.} The locally [[ringed space]] $\hat Y$ is defined as the [[topological space]] $Y$ with structure sheaf $\lim O_X/{\mathcal I}^n$, where $\mathcal{I}$ is the defining sheaf of ideals of the closed immersion $Y\hookrightarrow X$. (Where $Y$ is a closed subscheme of $X$.) \textbf{Examples.} $X=\hat Y$ when $Y=X$. $\mathrm{Spec} k[t]=X$, $Y=V(t)$, $\hat X=k[t,t^{-1}]$. In fact not every locally noetherian formal scheme can be obtained as a completion of a single noetherian scheme in another scheme; such formal schemes are called \emph{algebraizable}. \textbf{Definition. (formal spectrum)} The [[formal spectrum]] $\mathrm{Spf} R$ of a commutative noetherian ring $R$ with a specified ideal $I \subset R$ whose powers define a local basis of a topology around $0$ which is Hausdorff, is the locally [[ringed space]] with the underlying [[topological space]] $\mathrm{Spec} R/I$ whose global sections of the [[structure sheaf]] are the [[limit]] \begin{displaymath} O_{\mathrm{Spf} R}(\mathrm{Spf} R)=\lim_n (R/I^n) \,. \end{displaymath} (This is incomplete description, one needs to talk sheaves of ideals instead) \hypertarget{formal_group_laws_from_elliptic_curve}{}\subsubsection*{{formal group laws from elliptic curve}}\label{formal_group_laws_from_elliptic_curve} Recall from the above that a given a [[formal group law]] $F(x,y) \in R[ [x,y] ]$ we get te structure of a [[formal group]] on the [[formal spectrum]] $Spf$ by taking the product to be given by \begin{displaymath} \itexarray{ Spf R[[x,y]] \simeq Spf[[x]] \times Spf R[[y]] &\to& Spf R[[z]] \\ f(x,y)&\leftarrow |& z } \end{displaymath} Isomorphic [[formal group law]]s give isomorphism|isomorphic] (of [[formal group]]s) if $G$ a [[formal group]] has $G \simeq Spf R[ [z] ]$; we must choose such an iso to get a [[formal group law]]. Now we get [[formal group]]s from [[elliptic curve]]s over $R$ \textbf{Definition} An \textbf{[[elliptic curve]]} over a commutative [[ring]] $R$ is a [[group object]] in the [[category]] of [[scheme]]s over $R$ that is a relative 1-dimensional, , [[smooth scheme|smooth curve]], [[proper scheme|proper]] curve over $R$. This implies that it has [[genus]] 1. (by a direct argument of the Chern class of the tangent bundle.) Given an [[elliptic curve]] over $R$, $E \to Spec R$, we get a [[formal group]] $\hat E$ by completing $D$ along its identity [[section]] $\sigma_0$ \begin{displaymath} E \to Spec(R) \stackrel{\sigma_0}{\to} E \end{displaymath} (the one dual to the map that maps everything to $0 \in R$), we get a [[ringed space]] $(\hat E, \hat O_{E,0})$ \textbf{example} if $R$ is a [[field]] $k$, then the [[structure sheaf]] $\hat O_{E,0} \simeq k[ [z] ]$ then \begin{displaymath} \hat O_{E \times E, (0,0)} \simeq \hat O_{E,0} \hat \otimes_k \hat O_{E,0} \simeq k[[x,y]] \end{displaymath} \textbf{example} \textbf{(Jacobi quartics)} \begin{displaymath} y^2 = 1- 2 \delta x^2 + \epsilon x^4 \end{displaymath} defines $E$ over $R = \mathbb{Z}[Y_Z,\epsilon, \delta]$. The corresponding [[formal group law]] is \textbf{Euler's formal group law} \begin{displaymath} f(x,y) = \frac{x\sqrt{1- 2 \delta y^2 + \epsilon y^4} + y \sqrt{1- 2 \delta x^2 + \epsilon x^4}} {1- \epsilon x^2 y^2} \end{displaymath} if $\Delta := \epsilon(\delta^2 - \epsilon)^2 \neq 0$ then this is a non-trivial elliptic curve. If $\Delta = 0$ then $f(x,y) \simeq G_m, G_a$ (additive or multiplicative formal group law corresponding to [[integral cohomology]] and [[K-theory]], respectively). \hypertarget{weakly_periodic_cohomology_theories_and_formal_groups}{}\subsection*{{weakly periodic cohomology theories and formal groups}}\label{weakly_periodic_cohomology_theories_and_formal_groups} A [[multiplicative cohomology theory|multiplicative]] [[cohomology theory]] $A$ is \textbf{[[weakly periodic cohomology theory|weakly periodic]]} if the natural map \begin{displaymath} A^2({*}) \otimes_{A^0({*})} A^n({*}) \stackrel{\simeq}{\to} A^{n+2}({*}) \end{displaymath} is an [[isomorphism]] for all $n \in \mathbb{Z}$. Compare with the notion of a [[periodic cohomology theory]]. \hypertarget{relation_to_formal_groups}{}\section*{{Relation to formal groups}}\label{relation_to_formal_groups} One reason why weakly periodic cohomology theories are of interest is that their [[cohomology ring]] over the space $\mathbb{C}P^\infty$ defines a [[formal group]]. To get a [[formal group]] from a [[weakly periodic cohomology theory|weakly periodic]], [[even cohomology theory|even]] [[multiplicative cohomology theory|multiplicative]] [[cohomology theory]] $A^\bullet$, we look at the induced map on $A^\bullet$ from a morphism \begin{displaymath} i_0 : {*} \to \mathbb{C}P^\infty \end{displaymath} and take the kernel \begin{displaymath} J := ker(i_0^* : A^0(\mathbb{C}P^\infty) \to A^0({*})) \end{displaymath} to be the [[ideal]] that we complete along to define the [[formal scheme]] $Spf A^0(\mathbb{C}P^\infty)$ (see there for details). Notice that the map from the point is unique only up to [[homotopy]], so accordingly there are lots of chocies here, which however all lead to the same result. The fact that $A$ is weakly periodic allows to reconstruct the [[cohomology theory]] essentially from this [[formal scheme]]. To get a [[formal group law]] from this we proceed as follows: if the [[Lie algebra]] $Lie(Spf A^0(\mathbb{C}P^\infty))$ of the [[formal group]] \begin{displaymath} Lie(Spf A^0(\mathbb{C}P^\infty)) \simeq ker(i_0^*)/ker(i_0^*)^2 \end{displaymath} is a free $A^0({*})$-module, we can pick a generator $t$ and this gives an [[isomorphism]] \begin{displaymath} Spf(A^0(\mathbb{C}P^\infty)) \simeq Spf(A^0({*})[[t]]) \end{displaymath} if $A^0(\mathbb{C}P^\infty) A^0({*})[ [t] ]$ then $i_0^*$ ``forgets the $t$-coordinate''. \textbf{Definition} An \textbf{elliptic cohomology theory} over $R$ is \begin{itemize}% \item a commutative [[ring]] $R$ \item an [[elliptic curve]] $E/R$ \item a [[weakly periodic cohomology theory|weakly periodic]], [[multiplicative cohomology theory|multiplicative]], [[even cohomology theory|even]] [[cohomology theory]] $A^\bullet$ \item [[isomorphism]]s $A^0({*}) \simeq R$ and $\hat E \simeq Spf(A^0(\mathbb{C}P^\infty))$. \end{itemize} So we have on one side \begin{displaymath} \itexarray{ \hat E &\stackrel{\simeq}{\to}& Spf A^0(\mathbb{C}P^\infty) \\ \downarrow && \downarrow \\ Spec R &\stackrel{\simeq}{\to}& Spec A^0({*}) \\ \downarrow^{\sigma_0} && \downarrow \\ \hat E &\stackrel{\simeq}{\to}& Spf A^0(\mathbb{C}P^\infty) } \end{displaymath} We can check that the [[Landweber exactness criterion]] is satisfied for the [[formal group law]] of the [[Jacobi quartic]], i.e. for [[Euler's formal group law]] over $\mathbb{Z}[\Delta^{-1}, \epsilon, \delta, 1/2]$, so this provides an example of an [[elliptic cohomology]] theory. \begin{displaymath} A^n_G(X) = M P (X) \otimes_{M P({*})} \mathbb{Z}[\Delta^{-1}, \epsilon, \delta, 1/2] \end{displaymath} \end{document}