\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - the derived moduli stack of derived elliptic curves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \begin{quote}% \textbf{Abstract} We sketch some basic ideas ([[Jacob Lurie]]`s ideas, that is) about [[higher geometry]] motivated from the [[higher category theory|higher]] version of the [[moduli stack]] of [[elliptic curve]]s: the derived moduli stack of [[derived elliptic curve]]s. We survey aspects of the theory of [[generalized scheme]]s and then sketch how the derived moduli stack of derived elliptic curves is an example of a generalized scheme modeled on the formal dual of [[E-∞ ring]]s. \end{quote} This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] \end{itemize} see there for background and context. For fully appreciating the details of the main theorem here the material discussed in the previous sessions (and a little bit more) is necessary, but our exposition of [[generalized scheme]]s is meant to be relatively self-contained (albeit necessarily superficial). This are the entries on the previous sessions: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - cohomology theories]] \item [[A Survey of Elliptic Cohomology - formal groups and cohomology]] \item [[A Survey of Elliptic Cohomology - E-infinity rings and derived schemes]] \item [[A Survey of Elliptic Cohomology - elliptic curves]] \item [[A Survey of Elliptic Cohomology - equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - derived group schemes and (pre-)orientations]] \item [[A Survey of Elliptic Cohomology - A-equivariant cohomology]] \end{itemize} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{the_derived_moduli_stack_of_derived_elliptic_curves}{}\section*{{the derived moduli stack of derived elliptic curves}}\label{the_derived_moduli_stack_of_derived_elliptic_curves} \noindent\hyperlink{motivation_and_statement}{Motivation and Statement}\dotfill \pageref*{motivation_and_statement} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{NotionsOfSpace}{Notions of Space}\dotfill \pageref*{NotionsOfSpace} \linebreak \noindent\hyperlink{spaces_probeable_by_model_spaces_stacks}{spaces probeable by model spaces: $\infty$-stacks}\dotfill \pageref*{spaces_probeable_by_model_spaces_stacks} \linebreak \noindent\hyperlink{concrete_spaces_coprobeable_by_model_spaces_structured_toposes}{concrete spaces co-probeable by model spaces: structured $(\infty,1)$-toposes}\dotfill \pageref*{concrete_spaces_coprobeable_by_model_spaces_structured_toposes} \linebreak \noindent\hyperlink{spaces_locally_like_model_spaces_generalized_schemes}{Spaces locally like model spaces: generalized schemes}\dotfill \pageref*{spaces_locally_like_model_spaces_generalized_schemes} \linebreak \noindent\hyperlink{the_derived_moduli_space_of_elliptic_curves}{The derived moduli space of elliptic curves}\dotfill \pageref*{the_derived_moduli_space_of_elliptic_curves} \linebreak \noindent\hyperlink{derived_elliptic_curves}{Derived elliptic curves}\dotfill \pageref*{derived_elliptic_curves} \linebreak \noindent\hyperlink{the_derived_moduli_stack}{The derived moduli stack}\dotfill \pageref*{the_derived_moduli_stack} \linebreak \noindent\hyperlink{the_classification_of_derived_elliptic_curves}{the classification of derived elliptic curves}\dotfill \pageref*{the_classification_of_derived_elliptic_curves} \linebreak \hypertarget{motivation_and_statement}{}\subsection*{{Motivation and Statement}}\label{motivation_and_statement} In the context of [[elliptic cohomology]] one assigns to every [[elliptic curve]] $\phi$ over a [[ring]] $R$ a [[cohomology theory]] [[Brown representability theorem|represented]] by an [[E-∞ ring]] [[spectrum]] $E_\phi$. Since, by definition, we may identify the [[elliptic curve]] $\phi$ over $R$ with a patch $\phi : Spec R \to \mathcal{M}_{1,1}$ of the [[moduli stack]] $\mathcal{M}_{1,1}$ of elliptic curves, this assignment \begin{displaymath} \mathcal{O}^{Der} : \phi \mapsto E_\phi \end{displaymath} looks like an [[E-∞ ring]] valued [[structure sheaf]] on $\mathcal{M}_{1,1}$. There is a very general theory of [[higher geometry]] for [[nLab:generalized scheme|generalized spaces]] with generalized [[nLab:structure sheaf|structure sheaves]]. Using this one may regard the pair \begin{displaymath} (\mathcal{M}_{1,1}, \mathcal{O}^{Der}) \end{displaymath} as a [[structured (infinity,1)-topos|structured space]] that is a ``derived'' [[Deligne-Mumford stack]]. The central theorem about [[elliptic cohomology]] of [[Jacob Lurie]], refining the Goerss-Hopkins-Miller theorem says that \textbf{the central theorem, first version} The [[moduli stack]] $\mathcal{M}_{1,1}$ of [[elliptic curve]]s equipped with the [[E-∞ ring]]-valued [[structure sheaf]] $\mathcal{O}^{Der}$ may be regarded as the \emph{derived moduli stack} of [[derived elliptic curve]]s in that for any [[E-∞ ring]] $R$ the space of derived stack morphisms \begin{displaymath} (Spec R, R) \to (\mathcal{M}_{1,1}, \mathcal{O}^{Der}) \end{displaymath} is equivalent to the space of [[derived elliptic curve]]s over $R$. After we have looked at some concepts in [[higher geometry]] a bit more closely below, we will restate this in slightly nicer fashion. \hypertarget{references}{}\subsection*{{References}}\label{references} A sketch of what this theorem means and how it is proven is part of the content of \begin{itemize}% \item [[Jacob Lurie]], [[A Survey of Elliptic Cohomology]]. \end{itemize} and goes back to Jacob Lurie's PhD thesis (listed [[Jacob Lurie|here]]). The general theory for the context of [[higher geometry]] invoked here has later been spelled out in \begin{itemize}% \item [[Jacob Lurie]], [[Structured Spaces]] \end{itemize} The special case of the general theory that is needed here, where the coefficient objects of structure sheaves are [[E-∞ ring]]s, is described in \begin{itemize}% \item [[Jacob Lurie]], [[Spectral Schemes]], \end{itemize} while the general theory of [[E-∞ ring]]s themselves, in the [[(∞,1)-category]] theory context needed here, is developed in \begin{itemize}% \item [[Jacob Lurie]], [[higher algebra|Commutative geometry]]. \end{itemize} \hypertarget{NotionsOfSpace}{}\subsection*{{Notions of Space}}\label{NotionsOfSpace} The statement that we are after really lives in the context of [[higher geometry]] (often called ``derived geometry''). Here is an outline of the central aspects. The \textbf{central ingredient} which we choose at the beginning to get a theory of [[higher geometry]] going is an [[(∞,1)-category]] $\mathcal{G}$ whose objects we think of as \textbf{model spaces} : the simplest objects exhibiting the geometric structures that we mean to consider. \textbf{Examples for categories of model spaces} \begin{itemize}% \item with smooth structure \begin{itemize}% \item $\mathcal{G} =$ [[Diff]], the category of smooth [[manifold]]s; \item $\mathcal{G} = \mathbb{L}$, the category of [[smooth locus|smooth loci]]; \end{itemize} \item without smooth structure \begin{itemize}% \item $\mathcal{G} = (C Ring^{fin})^{op}$, the formal dual of [[CRing]]: the category of (finitely generated) algebraic [[affine scheme]]s; \item $\mathcal{G} = (sC Ring^{fin})^{op}$, the formal dual of [[simplicial object]]s in [[CRing]]; \item $\mathcal{G} = (E_\infty Ring^{fin})^{op}$, the formal dual of [[E-∞ ring]]s: the category of (finitely generated) algebraic derived [[affine scheme]]s. \end{itemize} \end{itemize} These [[(∞,1)-category|(∞,1)-categories]] $\mathcal{G}$ are naturally equipped with the structure of a [[site]] (and a bit more, which we won't make explicit for the present purpose). Following [[Jacob Lurie]] we call such a $\mathcal{G}$ a \textbf{[[geometry (for structured (infinity,1)-toposes)|geometry]]} . We want to be talking about generalized spaces \emph{modeled on} the objects of $\mathcal{G}$. There is a hierarchy of notions of what that may mean: \textbf{Hierarchy of generalized spaces modeled on $\mathcal{G}$} \begin{displaymath} \itexarray{ \mathcal{G} &\stackrel{Spec^{\mathcal{G}}}{\hookrightarrow}& Sch(\mathcal{G}) &\hookrightarrow& \mathcal{L}Top(\mathcal{G})^{op} &\hookrightarrow& Sh_{(\infty,1)}(Pro(\mathcal{G})) \\ \\ model spaces && spaces locally like model spaces && concrete spaces coprobeable by model spaces && spaces probeable by model spaces \\ \\ affine\;\mathcal{G}-schemes && \mathcal{G}-schemes && \mathcal{G}-structured\;(\infty,1)-toposes && \infty-stacks\;on\;\mathcal{G} \\ \stackrel{tame\;but\;restrictive}{\leftarrow} & &&&& & \stackrel{versatile\;but\;possibly\;wild}{\to} } \end{displaymath} We explain what this means from right to left. \hypertarget{spaces_probeable_by_model_spaces_stacks}{}\subsubsection*{{spaces probeable by model spaces: $\infty$-stacks}}\label{spaces_probeable_by_model_spaces_stacks} An object $X$ \emph{probeable} by objects of $\mathcal{G}$ should come with an assignment \begin{displaymath} X : (U \in \mathcal{G}) \mapsto (X(U) \in \infty Grpd) \end{displaymath} of an [[∞-groupoid]] of possible ways to probe $X$ by $U$, for each possible $U$, natural in $U$. More precisely, this should define an object in the [[(∞,1)-category of (∞,1)-presheaves]] on $\mathcal{G}$ \begin{displaymath} X \in PSh(\mathcal{G}) = Funct(\mathcal{G}^{op}, \infty Grpd) \end{displaymath} But for $X$ to be \emph{consistently} probeable it must be true that probes by $U$ can be reconstructed from overlapping probes of pieces of $U$, as seen by the [[coverage|topology]] of $\mathcal{G}$. More precisely, this should mean that the [[(∞,1)-presheaf]] $X$ is actually an object in an [[(∞,1)-category of (∞,1)-sheaves]] on $\mathcal{G}$ \begin{displaymath} X \in Sh(\mathcal{G}) \stackrel{}{\hookrightarrow} PSh(\mathcal{G}) \,. \end{displaymath} Such objects are called [[∞-stack]]s on $\mathcal{G}$. The [[(∞,1)-category]] $Sh(\mathcal{G})$ is called an [[∞-stack]] [[(∞,1)-topos]]. A supposedly pedagogical discussion of the general philosophy of [[∞-stacks]] as probebable spaces is at [[motivation for sheaves, cohomology and higher stacks]]. The [[∞-stack]]s on $\mathcal{G}$ that are used in the following are those that satisfy [[descent]] on [[?ech cover]]s. But we will see [[(∞,1)-topos]]es of [[∞-stack]]s that may satisfy different descent conditions, in particular with respect to [[hypercover]]s. Every [[∞-stack]] [[(∞,1)-topos]] has a [[hypercompletion]] to one of this form. For concretely working with [[hypercomplete (∞,1)-topos]]es it is often useful to use [[models for ∞-stack (∞,1)-toposes]] in terms of the [[model structure on simplicial presheaves]]. \begin{displaymath} \itexarray{ Sh^{hc}_{(\infty,1)}(C) &\stackrel{\stackrel{\;\;\;\;\;lex\;\;\;\;\;\;}{\leftarrow}} {\hookrightarrow}& PSh_{(\infty,1)}(C) && \text{abstract nonsense def of (∞,1)-topos} \\ \uparrow^{\simeq} && \uparrow^{\simeq} && \text{Lurie's theorem} \\ ([C^{op}, SSet]_{loc})^\circ &\stackrel{\stackrel{Bousfield\;loc.}{\leftarrow}}{\to}& ([C^{op}, SSet]_{glob})^\circ && \text{model category of simplicial presheaves} } \end{displaymath} \begin{uremark} This discussion here is glossing over all set-theoretic size issues. See [[Structured Spaces|StSp, warning 2.4.5]]. \end{uremark} \hypertarget{concrete_spaces_coprobeable_by_model_spaces_structured_toposes}{}\subsubsection*{{concrete spaces co-probeable by model spaces: structured $(\infty,1)$-toposes}}\label{concrete_spaces_coprobeable_by_model_spaces_structured_toposes} Spaces probeable by $\mathcal{G}$ in the above sense can be very general. They need not even have a \emph{concrete underlying space} , even for general definitions of what \emph{that} might mean. \textbf{(Counter-)Example} For $\mathcal{G} =$ [[Diff]], for every $n \in \mathbb{N}$ we have the [[∞-stack]] $\Omega_{cl}^n(-)$ (which happens to be an ordinary [[sheaf]]) that assigns to each manifold $U$ the set of closed [[differential form|n-form]]s on $U$. This is important as a generalized space: it is something like the rational version of the [[Eilenberg-MacLane space]] $K(\mathbb{Z}, n)$. But at the same time this is a ``wild'' space that has exotic properties: for instance for $n=3$ this space has just a single point, just a single curve in it, just a single surface in it, but has many nontrivial probes by 3-dimensional manifolds. In the classical theory for instance of [[ringed space]]s or [[diffeological space]]s a \emph{concrete underlying space} is taken to be a [[topological space]]. But this in turn is a bit \emph{too} restrictive for general purposes: a topological space is the same as a [[localic topos]]: a [[category of sheaves]] on a [[category of open subsets]] of a [[topological space]]. The obvious generalization of this to [[higher geometry]] is: an [[n-localic (∞,1)-topos]] $\mathcal{X}$. This makes us want to say and make precise the statement that An \textbf{concrete [[∞-stack]]} $X$ is one which has an \emph{underlying} [[(∞,1)-topos]] $\mathcal{X}$: the collection of $U$-probes of $X$ is a [[subobject]] of the collection of [[(∞,1)-topos]]-morphisms from $U$ to $\mathcal{X}$: \begin{displaymath} X(U) \subset \mathcal{L}Top(\mathcal{G})^{op}(Sh_{\infty}(U),\mathcal{X}) \end{displaymath} We think of $\mathcal{X}$ as the [[(∞,1)-topos]] of [[∞-stack]]s on a category of open subsets of a would-be space $X$, only that this would be space $X$ might not have an independent existence as a space apart from $\mathcal{X}$. The available entity closest to it is the [[terminal object]] ${*}_{\mathcal{X}} \in \mathcal{X}$. To say that $\mathcal{X}$ is \emph{modeled on $\mathcal{G}$} means that among all the [[∞-stack]]s on the would-be space a [[structure sheaf]] of functions with values in objects of $\mathcal{G}$ is singled out: for each object $V \in \mathcal{G}$ there is a [[structure sheaf]] $\mathcal{O}(-,V) \in \mathcal{X}$, naturally in $V$. This yields an [[(∞,1)-functor]] \begin{displaymath} \mathcal{O} : \mathcal{G} \to \mathcal{X} \,. \end{displaymath} We think of $X$ as being a concrete space \emph{co-probebale} by $\mathcal{G}$ (we can map from the concrete $X$ into objects of $\mathcal{G}$). Such an $\mathcal{O}$ is a \emph{consistent} collection of coprobes if coprobes with values in $V$ may be reconstructed from co-probes with values in pieces of $V$. More precisely: \begin{udef} \textbf{($\mathcal{G}$-structure, [[Structured Spaces|StSp, def. 1.2.8]])} An [[(∞,1)-functor]] $\mathcal{O} : \mathcal{G} \to \mathcal{X}$ is a \textbf{$\mathcal{G}$-valued structure sheaf} on the [[(∞,1)-topos]] if \begin{itemize}% \item it preserves finite [[limit]]s \item and sends covering coproducts $(\coprod_i U_i) \to U$ to [[effective epimorphism]]s. \end{itemize} A pair $(\mathcal{X}, \mathcal{O})$ of an [[(∞,1)-topos]] $\mathcal{X}$ equipped with $\mathcal{G}$-valued [[structure sheaf]] $\mathcal{O} : \mathcal{G} \to \mathcal{X}$ we call a [[structured (∞,1)-topos]]. \end{udef} In summary: A \textbf{concrete [[∞-stack]] $X$ modeled on $\mathcal{G}$} is \begin{itemize}% \item an [[(∞,1)-topos]] $\mathcal{X}$ (``of $\infty$-stacks on $X$'') \item equipped with a $\mathcal{G}$-valued structure sheaf $\mathcal{O}$ in the form of a finite limits and cover preserving functor $\mathcal{O} : \mathcal{G} \to \mathcal{X}$. \end{itemize} The fundamental \textbf{example} for [[structured (∞,1)-topos]]es are provided by the objects of $\mathcal{G}$ themselves, which are canonically equipped with a $\mathcal{G}$-structure as follows. \begin{utheorem} \textbf{([[Structured Spaces|StSp, thm. 2.1.1]])} Let $f : \mathcal{G} \to \mathcal{G}'$ be a morphism of [[geometry (for structured (infinity,1)-toposes)|geometries]], then the obvious [[(∞,1)-functor]] $f^* : \mathcal{L}Top(\mathcal{G}) \to \mathcal{L}Top(\mathcal{G}')$ admits a [[left adjoint]] \begin{displaymath} f^* : \mathcal{L}Top(\mathcal{G}') \stackrel{\leftarrow}{\to} \mathcal{L}Top(\mathcal{G}) : Spec_{\mathcal{G}}^{\mathcal{G}'} \end{displaymath} called the \textbf{relative spectrum functor}. \end{utheorem} For $\mathcal{G}$ any [[geometry (for structured (infinity,1)-toposes)|geometry]], write $\mathcal{G}_{disc}$ for the [[geometry (for structured (infinity,1)-toposes)|geometry]] obtained from this by forgetting its [[coverage|Grothendieck topology]] and instead using the discrete topology where only equivalences cover. Notice that we may identify $\mathcal{G}_{disc}$-structures on the archetypical [[(∞,1)-topos]] [[∞Grpd]], being finite [[limit]]-preserving functors $\mathcal{G}_{disc}^{op} \to \infty Grpd$ with [[ind-object]]s in $\mathcal{G}^{op}$, hence with the opposite of [[pro-object]]s in $\mathcal{G}$. This gives a canonical inclusion \begin{displaymath} Pro(\mathcal{G}) \hookrightarrow \mathcal{L}Top(\mathcal{G})^{op} \,. \end{displaymath} \begin{udef} \textbf{([[Structured Spaces|StSp, def. 2.1.2]])} The composite [[(∞,1)-functor]] \begin{displaymath} Spec^{\mathcal{G}} : Pro(\mathcal{G})^{op} \hookrightarrow \mathcal{L}Top(\mathcal{G}_{disc}) \stackrel{Spec_{\mathcal{G}}^{\mathcal{G}_{disc}}}{\to} \mathcal{L}Top(\mathcal{G}) \end{displaymath} we call the \textbf{absolute spectrum functor} \end{udef} This [[category theory|abstract nonsense]] is reassuring, but we want a more concrete definition of what such $Spec^{\mathcal{G}} U$ is like: \begin{udef} \textbf{([[Structured Spaces|StSp, def. 2.2.9]])} For every $U \in \mathcal{G}$ there is naturally induced a [[coverage|topology]] on the [[over category]] $Pro(\mathcal{G})/U$. Define the [[(∞,1)-topos]] \begin{displaymath} Spec U := Sh_{(\infty,1)}(Pro(\mathcal{G})/U) \,, \end{displaymath} naturally to be thought of as the [[(∞,1)-topos]] of [[∞-stack]]s \emph{on $U$} . This is canonically equipped with a [[(∞,1)-functor]] \begin{displaymath} \mathcal{O}_{Spec X} : \mathcal{G} \to Spec X \,. \end{displaymath} \end{udef} And this is indeed the concrete underlying space produced by the absolute spectrum functor: \begin{utheorem} \textbf{[[Structured Spaces|StSp, prop. 2.2.11, thm. 2.2.12]])} For every $U \in \mathcal{G}$ the pair $(Spec U, \mathcal{O}_{Spec U})$ is indeed a [[structured (∞,1)-topos]] and is indeed equivalent to the $Spec^{\mathcal{G}} U$ defined more abstractly above. \end{utheorem} \textbf{Example} For $\mathcal{G} = (C Ring^{fin})^{op}$ with the standard [[coverage|topology]] we have that 0-localic $\mathcal{G}$-structured spaces are \emph{[[locally ringed space]]s} , while $\mathcal{G}_{disc}$-structured 0-localic spaces are just arbitrary [[ringed space]]s. Applying the above machinery to this situaton gives a spectrum functor that takes a [[ring]] $R$ first to the [[ringed space]] $({*,R})$ and this then to the [[locally ringed space]] $(Spec R, R)$. \hypertarget{spaces_locally_like_model_spaces_generalized_schemes}{}\subsubsection*{{Spaces locally like model spaces: generalized schemes}}\label{spaces_locally_like_model_spaces_generalized_schemes} We have seen that $\mathcal{G}$-[[structured (∞,1)-topos]]es are those general spaces modeled on $\mathcal{G}$ that are well-behaved in that at least they do have an ``underlying topological structure'' in the form of an underlying [[(∞,1)-topos]]. But such concrete spaces may still be very different from the model objects in $\mathcal{G}$. In parts this is desireable: many objects that one would naturally build out of the objects in $\mathcal{G}$, such as mapping spaces $[\Sigma,X]$, are much more general than objects in $\mathcal{G}$ but do live happily in $\mathcal{L}Top(\mathcal{G})^{op}$. But in many situations one would like to regard $\mathcal{G}$-[[structured (∞,1)-topos]]es that are not globally but \emph{locally} equivalent to objects in $\mathcal{G}$. This is supposed to be captured by the following definition. \begin{udef} \textbf{[[Structured Spaces|StSp, def. 2.3.9]]} A [[structured (∞,1)-topos]] $(\mathcal{X}, \mathcal{O})$ is a \textbf{$\mathcal{G}$-generalized scheme} if \begin{itemize}% \item there exists a collection $\{V_i \in \mathcal{X}\}$ \item such that \begin{itemize}% \item this covers $\mathcal{X}$ in that the canonical morphism \begin{displaymath} (\coprod_i V_i) \to {*}_{\mathcal{X}} \end{displaymath} to the [[terminal object]] in $\mathcal{X}$ is an [[effective epimorphism]] \item the [[structured (∞,1)-topos]]es \newline $(\mathcal{X}/V_i, \mathcal{O}|_{V_i})$ induced by the $V_i$ are model spaces in that there exists $\{U_i \in \mathcal{G}\}$ and equivalences \begin{displaymath} (\mathcal{X}/V_i, \mathcal{O}|_{V_i}) \simeq Spec^{\mathcal{G}} U_i \end{displaymath} \end{itemize} \end{itemize} \end{udef} \textbf{Examples} \begin{quote}% \textbf{warning} the following statements really pertain to pregeometries, not geometries. for the moment this here is glossing over the difference between the two. See [[geometry (for structured (∞,1)-toposes)]] for the details. \end{quote} \begin{itemize}% \item ordinary smooth [[manifold]]s are [[n-localic (infinity,1)-topos|0-localic]] [[Diff]]-[[generalized scheme]]s (Structured Spaces|StSp, ex. 4.5.2]) \item ordinary [[schemes]] are those $(CRing^{fin})^{op}$-[[generalized scheme]]s whose underlying [[(∞,1)-topos]] is [[n-localic (infinity,1)-topos|0-localic]] and whose [[structure sheaf]] is [[n-truncated object of an (infinity,1)-category|0-truncated]] (Structured Spaces|StSp, prop. 4.2.9]) \item [[Deligne-Mumford stack]]s are 1-localic $(CRing^{fin})_{et}^{op}$-[[generalized scheme]]s (Structured Spaces|StSp, prop. 4.2.9]) \item This last statement is then the basis for calling a general $(CRing^{fin})_{et}^{op}$-[[generalized scheme]] a \textbf{derived Deligne-Mumford stack} \item Finally, to make contact with the application to the derived moduli stack of derived elliptic curves, it seems that in [[Spectral Schemes]] a derived Deligne-Mumford stack (with derived in the sense of having replaced ordinary commutative rings by [[E-∞ ring]]s) is gonna be a 1-localic $(E_\infty Ring^{fin})^{op}$-[[generalized scheme]]. \end{itemize} \hypertarget{the_derived_moduli_space_of_elliptic_curves}{}\subsection*{{The derived moduli space of elliptic curves}}\label{the_derived_moduli_space_of_elliptic_curves} With the above machinery for [[higher geometry]] in hand, we now set out to describe the particular application that we are interested in: the study of the derived [[moduli stack]] of [[derived elliptic curve]]s. \hypertarget{derived_elliptic_curves}{}\subsubsection*{{Derived elliptic curves}}\label{derived_elliptic_curves} \begin{itemize}% \item [[derived elliptic curve]] \end{itemize} \begin{displaymath} A \mapsto E(A) \end{displaymath} \hypertarget{the_derived_moduli_stack}{}\subsubsection*{{The derived moduli stack}}\label{the_derived_moduli_stack} Lurie's discussion of the derived moduli stack $(\mathcal{M}_{1,1}, \mathcal{O}^{Der})$ is more than a re-interpretation of the Goerss-Miller-Hopkins theorem. It is in particular a re-derivation of this result, from the following perspective \textbf{the central statement, conceptually} \textbf{Input} We have the $(E_\infty Ring)^{op}$-probeable space \begin{displaymath} (E : R \mapsto \{derived\;elliptic\;curves\;over\;R\}) \in Sh(E_\infty Ring^{op}) \,. \end{displaymath} \textbf{Question}: Does this happen to even be a $E_\infty Ring^{op}$-[[generalized scheme]]? \textbf{Answer} Yes. It is actually a [[derived Deligne-Mumford stack]]. Let $\mathcal{M}_{1,1}$ be the ordinary [[moduli stack]] of [[elliptic curve]]s. Using constructions in [[elliptic cohomology]] we may associate to each [[elliptic curve]] over $R$, i.e. each morphism $\phi : Spec R \to \mathcal{X}$, an [[E-infinity ring]] $E_\phi$ -- the multiplicative spectrum that represents the elliptic cohomology theory given by $T$. This gives an $E_\infty$-ring valued structure sheaf \begin{displaymath} \mathcal{O}^{Der} : (\phi : Spec R \to \mathcal{X}) \mapsto E_\phi \,. \end{displaymath} \textbf{Question} What, if anything, is this derived stack a derived [[moduli stack]] of? \hypertarget{the_classification_of_derived_elliptic_curves}{}\subsubsection*{{the classification of derived elliptic curves}}\label{the_classification_of_derived_elliptic_curves} The big theorem is that the derived space $(\mathcal{X}, \mathcal{O}^{Der})$ classifies derived elliptic curves over $E_\infty$-rings This is the theorem that we said above we wanted to consider, stated now a little bit more precisely. \begin{utheorem} \textbf{(J. Lurie)} For \begin{itemize}% \item $A$ any [[E-∞ ring]] \item and $E(A)$ is the space of [[derived elliptic curve]]s over $A$ (the realization of the topological category of elliptic curves over $A$). \end{itemize} we have an equivalence \begin{displaymath} Hom(Spec A, (\mathcal{X}, \mathcal{O}^{Der})) \simeq E(A) \end{displaymath} naturally in $A$. \end{utheorem} \begin{proof} Jacob Lurie writes that the proof proceeds alonmg these steps. Details will be discussed in the next session. \begin{enumerate}% \item consider the presheaf of preoriented ellitptic curves $E'(A)$ first \item observe that this restricted to ordinary rings produces the ordinary moduli stack \item notice that every oo-stack with good deformation theory that restricts this way is a derived Deligne-Mumford stack $(\mathcal{X}, \mathcal{O}')$ that assigns connective $E_\infty$-rings over affines \item let $\omega$ be the line bundle on $\mathcal{M}_{1,1}$ regarded as a coheren sheaf. There is then from the preorientation of the universal curve over $(\mathcal{M}, \mathcal{O}')$ a morphism \begin{displaymath} \beta : \omega \to \pi_2 \mathcal{O}' \end{displaymath} \item let $\mathcal{O}$ be the sheaf obtained from $\mathcal{O}'$ by inverting $\beta$ \item show that \begin{enumerate}% \item for $n = 2 k$ we have an isomorphism $\omega^k \to \pi_{2 k}\mathcal{O}$ \item for $n = 2 k + 1$ we have an isomorphism $0 \to \pi_{2k +1}\mathcal{O}$ strategy: reduce to neighbourhood of a point \end{enumerate} \item notice that this implies the desired statement \end{enumerate} \end{proof} [[!redirects derived moduli stack of derived elliptic curves]] \end{document}