\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A Survey of Elliptic Cohomology - towards a proof} \begin{quote}% \textbf{Abstract} This entry attempts to give an outline of a proof of Lurie's main theorem. \end{quote} This is a sub-entry of \begin{itemize}% \item [[A Survey of Elliptic Cohomology]] \end{itemize} see there for background and context. Here are the entries on the previous sessions: \begin{itemize}% \item [[A Survey of Elliptic Cohomology - cohomology theories]] \item [[A Survey of Elliptic Cohomology - formal groups and cohomology]] \item [[A Survey of Elliptic Cohomology - E-infinity rings and derived schemes]] \item [[A Survey of Elliptic Cohomology - elliptic curves]] \item [[A Survey of Elliptic Cohomology - equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - derived group schemes and (pre-)orientations]] \item [[A Survey of Elliptic Cohomology - A-equivariant cohomology]] \item [[A Survey of Elliptic Cohomology - the derived moduli stack of derived elliptic curves]] \end{itemize} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{towards_a_proof}{}\section*{{Towards a proof}}\label{towards_a_proof} \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{representability}{Representability}\dotfill \pageref*{representability} \linebreak \noindent\hyperlink{reduction}{Reduction}\dotfill \pageref*{reduction} \linebreak \noindent\hyperlink{reducing_to_a_local_calculation}{Reducing to a Local Calculation}\dotfill \pageref*{reducing_to_a_local_calculation} \linebreak \noindent\hyperlink{key_ingredients}{Key Ingredients}\dotfill \pageref*{key_ingredients} \linebreak \noindent\hyperlink{divisible_groups}{$p$-divisible Groups}\dotfill \pageref*{divisible_groups} \linebreak \noindent\hyperlink{serretate_theory}{Serre-Tate Theory}\dotfill \pageref*{serretate_theory} \linebreak \noindent\hyperlink{derived_serretate_theory}{Derived Serre-Tate Theory}\dotfill \pageref*{derived_serretate_theory} \linebreak \noindent\hyperlink{proof_of_the_classical_theorem}{Proof of the Classical Theorem}\dotfill \pageref*{proof_of_the_classical_theorem} \linebreak \noindent\hyperlink{adding_in_completions}{Adding in Completions}\dotfill \pageref*{adding_in_completions} \linebreak \noindent\hyperlink{deformation_theory}{Deformation Theory}\dotfill \pageref*{deformation_theory} \linebreak \noindent\hyperlink{deformations_of_fgls_and_lubintate_spectra}{Deformations of FGLs and Lubin-Tate Spectra}\dotfill \pageref*{deformations_of_fgls_and_lubintate_spectra} \linebreak \noindent\hyperlink{the_final_sprint}{The Final Sprint}\dotfill \pageref*{the_final_sprint} \linebreak \noindent\hyperlink{the_supersingular_case}{The Supersingular Case}\dotfill \pageref*{the_supersingular_case} \linebreak \noindent\hyperlink{the_ordinary_case}{The Ordinary Case}\dotfill \pageref*{the_ordinary_case} \linebreak Recall the main theorem. \begin{utheorem} \textbf{(J. Lurie)} For \begin{itemize}% \item $A$ any [[E-∞ ring]] \item and $E(A)$ is the space of oriented [[derived elliptic curve]]s over $A$ (the realization of the topological category of elliptic curves over $A$). \end{itemize} There exists a derived Deligne-Mumford stack $M^{Der} = (M, O^{Der})$ such that we have an equivalence \begin{displaymath} Hom(Spec A, M^{Der}) \simeq E(A) \end{displaymath} natural in $A$. And $O^{Der}$ provides the lift of Goerss-Hopkins-Miller. \end{utheorem} \hypertarget{preliminaries}{}\subsection*{{Preliminaries}}\label{preliminaries} Recall that for $A$ an $E_\infty$-ring a [[derived elliptic curve]] $F$ is a commutative [[derived group scheme]] over $A$ such that $F_0$ over $\pi_0 A$ is an elliptic curve. Denote by $E' (A)$ the space of preoriented (derived) elliptic curves (so equipped with a map $\mathbb{C} P^\infty \to F ( \mathrm{Spec} A )$. And $E(A)$ the space of oriented elliptic curves. Note that a map $\mathrm{Spec} A \to M^{Der}$ is a map $\mathrm{Spec} \pi_0 A \to M_{1,1}$ and a map of rings $O (\mathrm{Spec} \pi_0 A) \to A$. \hypertarget{representability}{}\subsection*{{Representability}}\label{representability} In his thesis, Lurie proves the following. \textbf{Proposition.} Let $F$ be a functor from connective $E_\infty$-ring spectra to spaces s.t. \begin{enumerate}% \item The restriction of $F$ to discrete rings is represented by a (classical) DM-stack $X$, i.e. $F(R) \simeq \mathrm{Nerv} X(R)$; \item $F$ is a sheaf with respect to the etale topology; \item $F$ has a good deformation theory. \end{enumerate} Then there exists a derived DM-stack $(X , \hat O )$ representing $F$ s.t. $\hat O (U)$ is connective for $U$ affine. \textbf{Examples.} \begin{enumerate}% \item The functor $E'$: observe that every classical elliptic curve over a discrete $R$ has a unique preorientation. Hence $E'$ is represented by DM-stack $(M, O' )$. \item The functor $E$: the theorem doesn't apply as a discrete ring cannot be weakly periodic. \end{enumerate} \textbf{Claim.} $(M, O')$ represents $E'$ for all $E_\infty$-rings, so we dropped connectivity. \emph{Proof.} Recall the map $A \to \tau_{\ge 0} A$ to the connected cover. \begin{enumerate}% \item Let $A$ be an $E_\infty$-ring, then we have an equivalence \end{enumerate} \begin{displaymath} \mathrm{Hom} (O' (\mathrm{Spec} \pi_0 \tau_{\ge 0} A) , \tau_{\ge 0} A ) \to \mathrm{Hom} (O' (\mathrm{Spec} \pi_0 A) , A). \end{displaymath} \begin{enumerate}% \item $E' ( \tau_{\ge 0} A \simeq E' (A)$ since every elliptic curve is by definition flat. \end{enumerate} We need the following to prove the claim. \textbf{Proposition.} The functor $M \mapsto M \otimes_{\tau_{\ge 0} A} A,$ from flat modules over $\tau_{\ge 0} A$ to flat modules over $A$ is an equivalence. \emph{Proof of proposition (sketch).} Let $M,N$ be $A$-modules then there is a spectral sequence \begin{displaymath} \mathrm{Tor}_{p}^{\pi_* A} (\pi_* M, \pi_* N )_q \Rightarrow \pi_{p+q} (M \otimes_A N ) . \end{displaymath} Suppose $M$ is flat, then \begin{displaymath} \mathrm{Tor}_{p}^{\pi_* A} (\pi_* M , \pi_* N) = \pi_* N \otimes_{\pi_0 A} \pi_0 M \end{displaymath} if $p=0$ and 0 otherwise. Thus, \begin{displaymath} \pi_* (M \otimes_A N ) \simeq \pi_* N \otimes_{\pi_0 A} \pi_0 M . \end{displaymath} So we have \begin{displaymath} F: \mathrm{Mod}^{flat} (\tau_{\ge 0} A ) \leftrightarrow \mathrm{Mod}^{flat} (A) : G . \end{displaymath} This is an equivalence and $F$ respects the monoidal structure, hence the equivalence extends to the categories of algebras and the proposition (and hence claim) is proved. We need to know that $\pi_i O'$ are coherent sheaves over $M_{1,1}$, where a [[coherent sheaf]] is an assignment $\mathrm{Spec} R \to M_{1,1}$ which behaves well under finite limits. Let $\omega$ be the line bundle of invariant differentials on $M_{1,1}$ so that is \begin{displaymath} \omega = e^* \Omega_{F |_{\mathrm{Spec} R}}. \end{displaymath} Recall that a preorientation determines a map $\beta : \omega \to \pi_2 (O' )$. So define a sheaf of $E_\infty$-rings $O$ as $O' [ \beta^{-1} ]$ which is characterized (maybe) by \begin{displaymath} \pi_n O = \lim ( \pi_{n+2k} O' \otimes_{O_{1,1}} \omega^{-k} ) . \end{displaymath} \textbf{Remark.} \begin{itemize}% \item This formula comes from a much simpler situation\ldots{}Let $R$ be (an honest to God) ring, $x \in R$ then \end{itemize} \begin{displaymath} R[x^{-1}] \simeq \lim (R \stackrel{x}{\to} R \stackrel{x}{\to} \dots ) \end{displaymath} \begin{itemize}% \item Suppose $U \to M_{1,1}$ with $U$ affine, $\omega$ restricted to $U$ is trivialized then $O' (U) =A$ and $\beta \in \pi_2 A$. Hence, $O' [\beta^{-1} ] (U) = A [ \beta^{-1} ]$ and we get the formula above $\pi_i (A [ \beta^{-1} ]) = (\pi_i A) [\beta^{-1} ]$. \end{itemize} More generally, for $U \to M_{1,1}$ we have that $O(U)$ is weakly periodic, so \begin{displaymath} \pi_2 O (U) \otimes_{\pi_0 O(U)} \pi_n O(U) \to \pi_{n+2} O (U) \end{displaymath} is an equivalence. \begin{itemize}% \item $(M, O)$ classifies oriented elliptic curve. Let $F$ over $U = \mathrm{Spec} B$ be a preoriented elliptic curve over $B$, so we have the classifying map $f: O' (U) = A \to B$ and this is an orientation iff \end{itemize} \begin{displaymath} \pi_n B \otimes_{\pi_0 B} \omega \to \pi_{n+2} B \end{displaymath} is an isomorphism. This map can be identified with $\times \beta$, so the preorientation is an orientation iff there is a unique factorization through $O(U) = A [ \beta^{-1} ]$. \hypertarget{reduction}{}\subsubsection*{{Reduction}}\label{reduction} \textbf{Claim.} To prove the theorem it is enough to show \begin{enumerate}% \item $O_{1,1} = \pi_0 O' \to \pi_0 O$ is an isomorphism; \item For $n$ odd, the sheaf $\pi_n O =0$. \end{enumerate} \emph{Proof.} Suppose (1) and (2) hold. Let $f: \mathrm{Spec} R \to M_{1,1}$ be etale for $R$ discrete. We must show that $O (\mathrm{Spec} R)$ is an elliptic cohomology theory associated to $f$. Condition (1) ensures $\pi_0 A \simeq R$, (2) guarantees evenness and from above we have weakly periodic. We must show that $\mathrm{Spf} A^{0} (\mathbb{C}P^\infty ) \simeq \hat E_f$ which follows from having an orientation. \hypertarget{reducing_to_a_local_calculation}{}\subsubsection*{{Reducing to a Local Calculation}}\label{reducing_to_a_local_calculation} We wish to show that $\pi_n O = 0$ for $n$ odd. From above, it suffices to show that \begin{displaymath} f_k : \pi_{n+2k} O' \otimes \omega^{-k} \to \pi_n O \end{displaymath} is zero for all $k$. Note that $\mathrm{im} (f_k )$ is a quotient of $\pi_{n+2k} O' \to \mathrm{im} (f_k )$ which is coherent. Suppose $p$ is an etale cover of $M_{1,1}$ then $\mathrm{im} (f_k ) = 0$ iff $p^{i} \mathrm{im} (f_k )=0$. We can find an etale cover by a disjoint union of level 3 and level 4 modular forms denoted $\mathrm{Spec} R$. That $M:= p^{i} \mathrm{im} (f_k ) =0$ is equivalent to $M \otimes_R R/m$ for all $m \in R$. It is not difficult to show that all residue fields $R/m$ are finite in this case. Now it is enough to show condition (2) formally locally as $\hat R_m /m \simeq R_m / m$. \hypertarget{key_ingredients}{}\subsection*{{Key Ingredients}}\label{key_ingredients} In the previous section we had a moduli stack preoriented elliptic curves $(M,O')$. The structure sheaf of $O'$ took values in \emph{connected} $E_\infty$-rings. We had a refinement $(M, O)$ which was a moduli stack for oriented elliptic curves. From the orientation condition we deduced that the structure sheaf took values in \emph{weakly periodic} $E_\infty$-rings. Further, we showed how to reduce the main theorem to a (formal) local computation. That is, we only need to consider $\hat R_m$, the completion of a ring localized at a maximal ideal. We delay the completion of the proof until later, but now we introduce the key technical tool: $p$-divisible groups. \hypertarget{divisible_groups}{}\subsubsection*{{$p$-divisible Groups}}\label{divisible_groups} Let $R$ be a complete, local ring (e.g. the $p$-adic integers $\mathbb{Z}_p$) and $E_0$ an [[elliptic curve]] over $R_0 := R/M = \mathbf{F}_q$. What do we need in order to lift $E_0$ to an elliptic curve over $R$? Let $p$ be a prime (say the characteristic of $\mathbf{F}_q$) and $E$ an [[elliptic curve]] over $R$. Using the \emph{multiplication by} $p$ map $p^n \colon E \to E$ we can define a sheaf of Abelian groups \begin{displaymath} E[p^\infty] := \mathrm{colim} \; E[p^n], \end{displaymath} where $E[p^n]$ is the kernel of the map $p^n$. That is, $E[p^n]$ corresponds to the $p$-torsion points of $E$. \textbf{Definition.} A $p$-divisible group $\mathfrak{I}$ over $R$ is a sheaf of Abelian groups on the flat site of schemes over $R$ such that \begin{enumerate}% \item $p^n : \mathfrak{I} \to \mathfrak{I}$ is surjective; \item $\mathfrak{I} = \mathrm{colim} \; \mathfrak{I} [p^n]$ where $\mathfrak{I} = \mathrm{ker} \; (p^n \colon \mathfrak{I} \to \mathfrak{I})$. \item $\mathfrak{I}[p^n]$ is a finite, flat, commutative $R$-group scheme. Note that finite means that $\mathfrak{I}$ is affine and whose global sections is a finite $R$-module. \end{enumerate} For instance, the constant sheaf $\underline{\mathbb{Z}_p}$ is a $p$-divisible group. \hypertarget{serretate_theory}{}\subsubsection*{{Serre-Tate Theory}}\label{serretate_theory} Now let $R$, in addition to above, be Noetherian with residue field $\mathbf{F}_q$ for $q=p^n$. \textbf{Theorem (Serre-Tate).} Let $\overline{E}$ be an elliptic curve over $\mathbf{F}_q$, then there is an equivalence of categories between elliptic curves over $R$ that restrict to $\overline{E}$ and the category of $p$-divisible groups $\mathfrak{I}$ over $R$ such that the restriction of $\mathfrak{I}$ to $\mathbf{F}_q$ is $\overline{E} [p^\infty ]$. The theorem is somewhat surprising as, \emph{a priori}, the latter category sees only torsion phenomena of the elliptic curves. \hypertarget{derived_serretate_theory}{}\subsubsection*{{Derived Serre-Tate Theory}}\label{derived_serretate_theory} \textbf{Definition.} Let $A$ be an $E_\infty$-ring. A functor $\mathfrak{I}$ from commutative $A$-algebras to topological Abelian groups is a $p$-divisible group if \begin{enumerate}% \item $B \mapsto \mathfrak{I} (B)$ is a sheaf; \item $p^n : \mathfrak{I} \to \mathfrak{I}$ is surjective; \item $(\mathrm{ho})\mathrm{colim} \; \mathfrak{I} [p^n] \simeq \mathfrak{I}$, where as above $\mathfrak{I} [p^n] := (\mathrm{ho}) \mathrm{ker} \; p^n$; \item $\mathfrak{I}[p^n]$ is a derived commutative group scheme over $A$ which is finite and flat. \end{enumerate} If $\mathfrak{I}$ is a $p$-divisible group over $\mathbf{F}_q$, then $\mathfrak{I} [p]$ is a finite $\mathbf{F}_q$-module of dimension $r$ called the \emph{rank} of $\mathfrak{I}$. \textbf{Proposition.} If $\mathfrak{I} = E [p^\infty]$, for $E$ an elliptic curve, then $\mathfrak{I}$ has rank 2. One can verify the proposition over $\mathbb{C}$ pretty easily; it is more subtle over a finite field. We have a derived version of the Serre-Tate theorem. \textbf{Theorem (Serre-Tate).} Let $A$ be an $E_\infty$-ring such that $\pi_0 A$ is a complete, local, Noetherian ring and $\pi_i A$ are finitely generated $\pi_0 A$-modules. Let $E_0$ be a (derived) elliptic curve over $\pi_0 A / M$, then there is an equivalence of $\infty$-categories: elliptic curves over $A$ that restrict to $E_0$ and $p$-divisible groups over $A$ that restrict to $E_0 [p^\infty]$. \hypertarget{proof_of_the_classical_theorem}{}\subsubsection*{{Proof of the Classical Theorem}}\label{proof_of_the_classical_theorem} We give a proof of the classical result, however the proof is quite formal and should carry over to the derived setting. Let $R$ be a ring as in the theorem such that $N \cdot R =0$ for some $N \in \mathbb{N}$ and let $I \subset R$ be a nilpotent ideal, so $I^{r+1} =0$, and set $R_0 = R/I$. Let $\mathfrak{I} \colon R-\mathrm{alg} \to \mathrm{Ab}$ and \begin{displaymath} \mathfrak{I}_I (A) := \mathrm{ker} \; ( \mathfrak{I} (A) \to \mathfrak{I} (A / I \cdot A ) . \end{displaymath} Further, define \begin{displaymath} \overline{\mathfrak{I}} (A) := \mathrm{ker} \; (\mathfrak{I}(A) \to \mathfrak{I} (A / \mathrm{nil}R \cdot A)) \subset \mathfrak{I}_I (A) . \end{displaymath} \textbf{Lemma.} If $\mathfrak{I}$ is a formal group over $R$, then $\mathfrak{I}_I$ is annihilated by $N^r$. \textbf{Proposition.} Let $\mathfrak{I}$, $\mathfrak{H}$ be elliptic curves or $p$-divisible groups over $R$ and let $N=p^n$. Denote by $\mathfrak{I}_0$ and $\mathfrak{H}_0$ the restriction of $\mathfrak{I}$ and $\mathfrak{H}$ to $R_0$-algebras. Then \begin{enumerate}% \item $\mathrm{Hom}_{R-grp} (\mathfrak{I}, \mathfrak{H})$ and $\mathrm{Hom}_{R_0-grp} (\mathfrak{I}_0 , \mathfrak{H}_0 )$ have no $N$-torsion; \item $\mathrm{Hom} (\mathfrak{I} , \mathfrak{H}) \to \mathrm{Hom} (\mathfrak{I}_0 , \mathfrak{H}_0 )$ is injective; \item For $f_0 \colon \mathfrak{I}_0 \to \mathfrak{H}_0$ there is a unique homomorphism $N^r f \colon \mathfrak{I} \to \mathfrak{H}$ which lifts $N^r \cdot f_0$; \item $f_0 \colon \mathfrak{I}_0 \to \mathfrak{H}_0$ lifts to $f \colon \mathfrak{I} \to \mathfrak{H}$ if and only if $N^r f$ annihilates $\mathfrak{I}[N^r] \subset \mathfrak{I}$. \end{enumerate} Note that if $E$ is an elliptic curve over $R$ then the $E_0$ above is given by \begin{displaymath} E_0 = E \times_{\mathrm{Spec} \; R} \mathrm{Spec} \; R/I . \end{displaymath} Using the previous results one can prove the following alternate version of the Serre-Tate theorem. \textbf{Theorem (alternative Serre-Tate).} Let $R$ be a ring with $p$ nilpotent and $I \subset R$ a nilpotent ideal. Let $R_0 = R/I$. We have a categorical equivalence: elliptic curves over $R$ and the category of triples $\{ (E, E_0 [p^\infty] , \epsilon )\}$; where $E$ is an elliptic curve over $R_0$, $E_0 [p^\infty]$ is a $p$-divisble group over $R$, and $\epsilon \colon E_0 [p^\infty] \to E[p^\infty]_0$ is a natural isomorphism. \hypertarget{adding_in_completions}{}\subsubsection*{{Adding in Completions}}\label{adding_in_completions} We really want to consider elliptic curves over $R$ completed by an ideal $m$, this is the $\hat{R}_m$ from far above. We can reduce this problem to that of elliptic curves over $R$ and a system of $p$-divisible groups over $R/m^n$ by combining the Serre-Tate theorem and the following theorem of Grothendieck. \textbf{Theorem (Formal GAGA).} Let $X, Y$ be exceedingly nice schemes over $R$ and $\hat X$, $\hat Y$ be their formal completions, then there is a bijection \begin{displaymath} \mathrm{Hom}_{R} (X,Y) \leftrightarrow \mathrm{Hom}_{\hat R} (\hat X, \hat Y). \end{displaymath} \hypertarget{deformation_theory}{}\subsection*{{Deformation Theory}}\label{deformation_theory} Fix a morphism $\mathrm{Spec} \; \mathbf{F}_q \to M_{1,1}$, that is an [[elliptic curve]] $E_0 /k$. Let $\mathbf{O}_k$ be the sheaf over $M_{1,1}$ that classifies deformations of $E_0$ to oriented elliptic curves over $A$ where $A$ is an $E_\infty$-ring with $\pi_0 A$ a complete, local ring. Let us assume for the moment that $M_{1,1} = \mathrm{Spec} \; R$ (more generally we pass to an affine cover). One can show that $\mathbf{O}_k$ moreover classifies oriented $p$-divisible groups which deform $E_0 [p^\infty]$. \hypertarget{deformations_of_fgls_and_lubintate_spectra}{}\subsubsection*{{Deformations of FGLs and Lubin-Tate Spectra}}\label{deformations_of_fgls_and_lubintate_spectra} Recall that for $F,G$ [[formal group law]]s over $R$ a morphism is $f \in R [ [x] ]$ with $f(0) =0$ such that $f(X +_F Y) = f(X) +_G f(Y)$. Now, let $k$ be a field of characteristic $p$ and $F,G$ formal group laws over $k$. Let $f: F \to G$ be a morphism, then \begin{displaymath} f = x^{p^n} + \dots \end{displaymath} where $n$ is the [[height]] of $f$. For $F$ a formal group law the height of $F$, $\mathrm{ht} \; F$, is the height of $[p]F$, that is the multiplication by $p$ map. Let $\Gamma$ be a formal group law over $k$, then a deformation of $F$ consists of a complete local ring $B$ ($B/M = k$) and $F$ a formal group law over $B$ such that $p_* F = \Gamma$, where $p: B \to B/M$ is the canonical surjection. To such deformations $F_1 , F_2$ are isomorphic if there is an isomorphism $f: F_1 \to F_2$ which induces the identity on $p_* F_1 = p_* F_2 = \Gamma$. \textbf{Theorem (Lubin-Tate).} Let $k, \Gamma$ as above with $\mathrm{ht} \; \Gamma \lt \infty$ then there exists a complete local ring $E(k, \Gamma )$ with residue field $k$ and a formal group law over $E(k, \Gamma)$, $F^{univ}$ which reduces to $\Gamma$ such that there is a bijection of sets \begin{displaymath} \mathrm{Hom} (E(k, \Gamma) , R) \to \mathrm{Deform} (\Gamma, R) . \end{displaymath} If $k = \mathbf{F}_p$, then $E(k, \Gamma) \simeq \mathbb{Z}_p [ [ u_1 , \ldots , u_{n-1} ] ]$ where $\mathrm{ht} \; \Gamma =n$. More generally, if $k= \mathbf{F}_q$, then $E(k, \Gamma) \simeq W\mathbf{F}_q [ [ u_1 , \ldots , u_{n-1} ] ]$, that is, the Witt ring. Let $E(k, \Gamma), F^{univ}$ as in the theorem, then we define $\overline{F}^{univ}$ over $E(k, \Gamma) [u^\pm]$, degree $u=2$, by $\overline{F}^{univ} (X,Y) = u^{-1} F^{univ} (uX , uY).$ We then define a homology theory as \begin{displaymath} ( E_{k,\Gamma})_* (X) = E(K,\Gamma)[ [u^\pm] ] \otimes_{MU_*} MU_* (X). \end{displaymath} Define a category (really a stack and let $p$ and $n$ vary) $\mathbf{FG}$ of pairs $(k,\Gamma)$ where $\mathrm{char} \; k =p$ and $\mathrm{ht} \; \Gamma =n$. By associating to any such pair its Lubin-Tate theory we get a functor from $\mathbf{FG}$ to multiplicative cohomology theories. \textbf{Theorem (Hopkins-Miller I).} This functor lifts to $E_\infty$-rings. \textbf{The philosophy is that there should be a sheaf of $E_\infty$-rings on the stack of formal groups $\mathbf{FG}$ with global sections the sphere spectrum. Then tmf and taf are low height approximations.} Let $E_{\infty}^{LT}$ be the subcategory of $E_\infty$-rings such that the associated cohomology theory is isomorphic to some $E_{k,\Gamma}$. \textbf{Theorem (Hopkins-Miller II).} $\pi : E_{\infty}^{LT} \to \mathbf{FG}$ is a weak equivalence of topological categories. That is, the lift above is pretty unique. This implies Hopkins-Miller I by taking a Kan extension $\mathbf{FG} \to E_\infty$ along the inclusion $E_{\infty}^{LT} \hookrightarrow E_\infty$. \hypertarget{the_final_sprint}{}\subsection*{{The Final Sprint}}\label{the_final_sprint} Let us sketch how to proceed\ldots{}Let $\mathfrak{I}$ be a $p$-divisible group over $A$ with $\pi_0 A$ complete and local. Then $\mathfrak{I}$ fits in an exact sequence \begin{displaymath} 0 \to \hat \mathfrak{I} \to \mathfrak{I} \to \mathfrak{I}_{et} \to 0 . \end{displaymath} There are two cases: either the underlying elliptic curve $E_0$ is super singular ($\mathrm{ht} \; E_0 =2$), else $E_0$ is ordinary. \hypertarget{the_supersingular_case}{}\subsubsection*{{The Supersingular Case}}\label{the_supersingular_case} In this case $\widehat{E_0} [p^\infty] = E_0 [p^\infty]$, so one can show $\widehat{\mathfrak{I}} = \mathfrak{I}$ for every deformation. Now an orientation means \begin{displaymath} \widehat{\mathfrak{I}} \simeq \mathrm{Spf} \; A^{\mathbb{C}P^\infty}[p^\infty], \end{displaymath} so $E_{k, \widehat{E_0}}$ classifies deformations to oriented $p$-divisible groups, hence $\mathbf{O}_k \simeq E_{k, \widehat{E_0}}$. By construction $E_{k,\widehat{E_0}}$ is even. \hypertarget{the_ordinary_case}{}\subsubsection*{{The Ordinary Case}}\label{the_ordinary_case} This is more subtle (see DAG IV 3.4.1 for some hints). First we can analyze the formal part of the exact sequence and see that deformations to formal $p$-divisible groups of height 1 are classified by $E_{k, \widehat{E_0}} [ p^\infty]$. By analyzing extensions etale $k$-algebras we see that $\mathbf{O}_k \simeq E_{k,\widehat{E_0}}^{\mathbb{C}P^\infty}$. The homotopy groups are then $E_{k , \widehat{E_0}} [ [t] ]$ and are odd as the degree of $t$ is 0. \end{document}