\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A first idea of quantum field theory -- Feynman diagrams} \hypertarget{FeynmanDiagrams}{}\subsection*{{Feynman diagrams}}\label{FeynmanDiagrams} So far we considered only the [[axioms]] on a consistent perturbative S-matrix /[[time-ordered products]] and its formal consequences. Now we discuss the actual construction of [[time-ordered products]], hence of perturbative S-matrices, by the process called \emph{[[renormalization]] of [[Feynman diagrams]]}. We first discuss how [[time-ordered product]], and hence the perturbative S-matrix \hyperlink{PerturbativeSMatrixAndTimeOrderedProducts}{above}, is uniquely determined away from the locus where interaction points coincide (prop. \ref{TimeOrderedProductAwayFromDiagonal} below). Moreover, we discuss how on that locus the time-ordered product is naturally expressed as a sum of [[products of distributions]] of [[Feynman propagators]] that are labeled by [[Feynman diagrams]]: the \emph{[[Feynman perturbation series]]} (prop. \ref{FeynmanPerturbationSeriesAwayFromCoincidingPoints} below). This means that the full [[time-ordered product]] is an [[extension of distributions]] of these \emph{[[scattering amplitudes]]- to the locus of coinciding vertices. The space of possible such extensions turns out to be finite-dimensional in each order of $g/\hbar, j/\hbar$, parameterizing the choice of [[point-supported distributions]] at the interaction points whose [[degree of a distribution|scaling degree]] is bounded by the given Feynman propagators.} \begin{defn} \label{TuplesOfCompactlySupportedPolynomialLocalFunctionalsWithPairwiseDisjointSupport}\hypertarget{TuplesOfCompactlySupportedPolynomialLocalFunctionalsWithPairwiseDisjointSupport}{} For $k \in \mathbb{N}$, write \begin{displaymath} \left(\mathcal{F}_{loc}\langle g,j\rangle\right)^{\otimes^k}_{pds} \hookrightarrow \left(\mathcal{F}_{loc}\langle g,j\rangle\right)^{\otimes^k} \end{displaymath} for the subspace of the $k$-fold [[tensor product]] of the space of compactly supported polynomial local densities (def. \ref{CompactlySupportedPolynomialLocalDensities}) on those [[tuples]] which have pairwise disjoint spacetime [[support]]. \end{defn} \begin{prop} \label{TimeOrderedProductAwayFromDiagonal}\hypertarget{TimeOrderedProductAwayFromDiagonal}{} \textbf{([[time-ordered product]] away from the diagonal)} Restricted to $\left(\mathcal{F}_{loc}\langle g,j\rangle\right)^{\otimes^k}_{pds}$ (def. \ref{TuplesOfCompactlySupportedPolynomialLocalFunctionalsWithPairwiseDisjointSupport}) there is a unique [[time-ordered product]] (def. \ref{TimeOrderedProduct}), given by the [[star product]] that is induced by the [[Feynman propagator]] $\omega_F$ \begin{displaymath} F \star_{\omega_F} G \;\coloneqq\; prod \circ \exp\left( \hbar \left\langle \omega_F , \frac{\delta}{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) (F \otimes G) \end{displaymath} in that \begin{displaymath} T( L_1 \cdots L_k ) = L_1 \star_{\omega_F} L_2 \star_{\omega_F} \cdots \star_{\omega_F} L_k \,. \end{displaymath} \end{prop} \begin{proof} Since the [[singular support]] of the [[Feynman propagator]] is on the [[diagonal]], and since the support of elements in $\left(\mathcal{F}_{loc}\langle g,j\rangle\right)^{\otimes^k}_{pds}$ is by definition in the complement of the diagonal, the star product $\star_{\omega_F}$ is well defined. By construction it satisfies the axioms ``peturbation'' and ``normalization'' in def. \ref{TimeOrderedProduct}. The only non-trivial point to check is that it indeed satisfies ``[[causal factorization]]'': Unwinding the definition of the [[Hadamard state]] $\omega$ and the [[Feynman propagator]] $\omega_F$, we have \begin{displaymath} \begin{aligned} \omega & = \tfrac{i}{2}( \Delta_R - \Delta_A ) + H \\ \omega_F & = \tfrac{i}{2}( \Delta_R + \Delta_A ) + H \end{aligned} \end{displaymath} where the propagators on the right have, in particular, the following properties: \begin{enumerate}% \item the [[advanced propagator]] vanishes when its first argument is not in the causal past of its second argument: \begin{displaymath} (supp(F) \geq supp(G)) \;\Rightarrow\; \left( \left\langle \Delta_A , \frac{\delta F}{\delta \phi} \otimes \frac{\delta G}{\delta \phi} \right\rangle = 0 \right) \,. \end{displaymath} \item the [[retarded propagator]] equals the [[advanced propagator]] with arguments switched: \begin{displaymath} \left\langle \Delta_R , \frac{\delta F}{\delta \phi} \otimes \frac{\delta G}{\delta \phi} \right\rangle = \left\langle \Delta_A , \frac{\delta G}{\delta \phi} \otimes \frac{\delta F}{\delta \phi} \right\rangle \end{displaymath} \item $H$ is symmetric: \begin{displaymath} \left\langle H, \frac{\delta F}{\delta \phi} \otimes \frac{\delta G}{\delta \phi} \right\rangle = \left\langle H, \frac{\delta G}{\delta \phi} \otimes \frac{\delta F}{\delta \phi} \right\rangle \end{displaymath} \end{enumerate} It follows for causal ordering $supp(F) \geq supp(G)$ (def. \ref{CausalOrdering}) that \begin{displaymath} \begin{aligned} F \star_{\omega_F} G & = prod \circ \exp\left( \hbar \left\langle \omega_F , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( F \otimes G ) \\ & = prod \circ \exp\left( \hbar \left\langle \tfrac{i}{2}( \Delta_R + \Delta_A ) + H , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( F \otimes G ) \\ & = prod \circ \exp\left( \hbar \left\langle \tfrac{i}{2}\Delta_R + H , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( F \otimes G ) \\ & = prod \circ \exp\left( \hbar \left\langle \tfrac{i}{2}( \Delta_R - \Delta_A ) + H , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( F \otimes G ) \\ & = prod \circ \exp\left( \hbar \left\langle \omega , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( F \otimes G ) \\ & = F \star_{\omega} G \end{aligned} \end{displaymath} and for $supp(G) \geq supp(F)$ that \begin{displaymath} \begin{aligned} F \star_{\omega_F} G & = prod \circ \exp\left( \hbar \left\langle \omega_F , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( F \otimes G ) \\ & = prod \circ \exp\left( \hbar \left\langle \tfrac{i}{2}( \Delta_R + \Delta_A ) + H , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( F \otimes G ) \\ & = prod \circ \exp\left( \hbar \left\langle \tfrac{i}{2} \Delta_A + H , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( F \otimes G ) \\ & = prod \circ \exp\left( \hbar \left\langle \tfrac{i}{2} \Delta_R + H , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( G \otimes F ) \\ & = prod \circ \exp\left( \hbar \left\langle \tfrac{i}{2} (\Delta_R - \Delta_A) + H , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) ( G \otimes F ) \\ & = G \star_{\omega} F \,. \end{aligned} \end{displaymath} This shows that $\star_F$ is a consistent time-ordered product on the subspace of functionals with disjoint support. It is immediate from the above that it is the unique solution on this subspace. \end{proof} \begin{remark} \label{TimeOrderedProductAssociative}\hypertarget{TimeOrderedProductAssociative}{} \textbf{([[time-ordered product]] is [[associativity|assocativative]])} Prop. \ref{TimeOrderedProductAwayFromDiagonal} implies in particular that the time-ordered product is [[associativity|associative]], in that \begin{displaymath} T( T(V_1 \cdots V_{k_1}) \cdots T(V_{k_{n-1}+1} \cdots V_{k_n} ) ) = T( V_1 \cdots V_{k_1} \cdots V_{k_{n-1}+1} \cdots V_{n_n} ) \,. \end{displaymath} \end{remark} It follows that the problem of constructing time-ordered products, and hence (by prop. \ref{TimeOrderedProductInducesPerturbativeSMatrix}) the perturbative S-matrix, consists of finding compatible [[extension of distributions|extension]] of the distribution $prod \circ \exp\left( \left\langle \omega_F , \frac{\delta }{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right)$ to the diagonal. Moreover, by the nature of the exponential expression, this means in each order to extend [[product of distributions|products]] of Feynman propagators labeled by [[graphs]] whose [[vertices]] correspond to the polynomial factors in $F$ and $G$ and whose [[edges]] indicate over which variables the Feynman propagators are to be multiplied. \begin{defn} \label{ScalarFieldFeynmanDiagram}\hypertarget{ScalarFieldFeynmanDiagram}{} \textbf{([[scalar field]] [[Feynman diagram]])} A \emph{[[scalar field]] [[Feynman diagram]]} $\Gamma$ is \begin{enumerate}% \item a [[natural number]] $v \in \mathcal{N}$ (number of [[vertices]]); \item a $v$-[[tuple]] of elements $(V_r \in \mathcal{F}_{loc} \langle g,j\rangle)_{r \in \{1, \cdots, v\}}$ (the interaction and external field vertices) \item for each $a \lt b \in \{1, \cdots, v\}$ a natural number $e_{a,b} \in \mathbb{N}$ (``of [[edges]] from the $a$th to the $b$th vertex''). \end{enumerate} For a given [[tuple]] $(V_j)$ of interaction vertices we write \begin{displaymath} FDiag_{(V_j)} \end{displaymath} for set of scalar field Feynman diagrams with that tuple of vertices. \end{defn} \begin{prop} \label{FeynmanPerturbationSeriesAwayFromCoincidingPoints}\hypertarget{FeynmanPerturbationSeriesAwayFromCoincidingPoints}{} \textbf{([[Feynman perturbation series]] away from coinciding vertices)} For $v \in \mathbb{N}$ the $v$-fold [[time-ordered product]] away from the diagonal, given by prop. \ref{TimeOrderedProductAwayFromDiagonal} \begin{displaymath} T_v \;\colon\; \left(\mathcal{F}_{loc}\langle g,j\rangle\right)_{pds}^{\otimes^{v}} \longrightarrow \mathcal{W}[ [ g/\hbar, j/\hbar] ] \end{displaymath} is equal to \begin{displaymath} T_k(V_1 \cdots V_v) \;=\; prod \circ \underset{\Gamma \in \mathcal{G}_{(V_j)_{j = 1}^{v}}}{\sum} \underset{ r \lt s \in \{1, \cdots, v\} }{\prod} \tfrac{1}{e_{r,s}!} \left\langle \hbar \omega_F \,,\, \frac{\delta^{e_{r,s}}}{\delta \phi_r^{e_{r,s}}} \frac{\delta^{e_{r,s}}}{ \delta \phi_s^{e_{r,s}} } \right\rangle (V_1 \otimes \cdots \otimes V_v) \,, \end{displaymath} where the edge numbers $e_{r,s} = e_{r,s}(\Gamma)$ are those of the given Feynman diagram $\Gamma$. \end{prop} (\href{Feynman+diagram#Keller10}{Keller 10, IV.1}) \begin{proof} We proceed by [[induction]] over the number of [[vertices]]. The statement is trivially true for a single vertex. Assume it is true for $v \geq 1$ vertices. It follows that \begin{displaymath} \begin{aligned} T(V_1 \cdots V_v V_{v+1}) & = T( T(V_1 \cdots V_v) V_{v+1} ) \\ &= prod \circ \exp\left( \left\langle \hbar \omega_F, \frac{\delta}{\delta \phi} \otimes \frac{\delta}{\delta \phi} \right\rangle \right) \left( prod \circ \underset{\Gamma \in \mathcal{G}_{(V_j)_{j = 1}^{v}}}{\sum} \underset{ r \gt s \in \{1, \cdots, v\} }{\prod} \frac{1}{e_{r,s}!} \left\langle \hbar \omega_F \,,\, \frac{\delta^{e_{r,s}}}{\delta \phi_r^{e_{r,s}}} \frac{\delta^{e_{r,s}}}{ \delta \phi_s^{e_{r,s}} } \right\rangle (V_1 \otimes \cdots \otimes V_v) \right) \;\otimes\; V_{v+1} \\ & = prod \circ \underset{\Gamma \in \mathcal{G}_{(V_j)_{j = 1}^{v}}}{\sum} \underset{ r \gt s \in \{1, \cdots, v\} }{\prod} \tfrac{1}{e_{r,s}!} \left\langle \hbar \omega_F \,,\, \frac{\delta^{e_{r,s}}}{\delta \phi_r^{e_{r,s}}} \frac{\delta^{e_{r,s}}}{ \delta \phi_s^{e_{r,s}} } \right\rangle \left( \underset{e_{1,{v+1}}, \cdots e_{v,v+1} \in \mathbb{N}}{\sum} \underset{t \in \{1, \cdots v\}}{\prod} \tfrac{1}{e_{t,v+1} !} \left( \frac{\delta^{e_{1,v+1}} V_1 }{\delta \phi_{1}^{e_{1,v+1}}} \otimes \cdots \otimes \frac{ \delta^{e_{v,v+1}} V_v}{ \delta \phi_{v}^{e_{v,v+1}} } \right) \;\otimes\; \frac{\delta^{e_{1,v+1} + \cdots + e_{v,v+1}} V_{v+1}}{\delta \phi_{v-1}^{e_{1,v+1} + \cdots + e_{v,v+1}}} \right) \\ &= prod \circ \underset{\Gamma \in \mathcal{G}_{(V_j)_{j = 1}^{v+1}}}{\sum} \underset{ r \lt s \in \{1, \cdots, v+1\} }{\prod} \tfrac{1}{e_{r,s}!} \left\langle \hbar \omega_F \,,\, \frac{\delta^{e_{r,s}}}{\delta \phi_r^{e_{r,s}}} \frac{\delta^{e_{r,s}}}{ \delta \phi_s^{e_{r,s}} } \right\rangle (V_1 \otimes \cdots \otimes V_{v+1}) \end{aligned} \end{displaymath} Here in the first step we use the [[associativity]] of the time-ordered product (remark \ref{TimeOrderedProductAssociative}), in the second step we use the induction assumption, in the third we pass the outer functional derivatives through the pointwise product using the [[product rule]], and in the fourth step we recognize that this amounts to summing in addition over all possible choices of sets of edges from the first $v$ vertices to the new $v+1$st vertex, which yield in total the sum over all diagrams with $v+1$ vertices. \end{proof} \begin{remark} \label{}\hypertarget{}{} \textbf{([[loop order]] and powers of [[Planck's constant]])} From prop. \ref{FeynmanPerturbationSeriesAwayFromCoincidingPoints} one deduces that the order in [[Planck's constant]] that a ([[planar graph|planar]]) [[Feynman diagram]] contributes to the S-matrix is given (up to a possible offset due to external vertices) by the ``number of loops'' in the diagram. In the computation of [[scattering amplitudes]] for [[field (physics)|fields]]/[[particles]] via [[perturbative quantum field theory]] the [[scattering matrix]] ([[Feynman perturbation series]]) is a [[formal power series]] in (the [[coupling constant]] and) [[Planck's constant]] $\hbar$ whose contributions may be labeled by [[Feynman diagrams]]. Each Feynman diagram $\Gamma$ is a finite labeled [[graph]], and the order in $\hbar$ to which this graph contributes is \begin{displaymath} \hbar^{ E(\Gamma) - V(\Gamma) } \end{displaymath} where \begin{enumerate}% \item $V(\Gamma) \in \mathbb{N}$ is the number of [[vertices]] of the graph \item $E(\Gamma) \in \mathbb{N}$ is the number of [[edges]] in the graph. \end{enumerate} This comes about, according to the above, because \begin{enumerate}% \item the explicit $\hbar$-dependence of the [[S-matrix]] is \begin{displaymath} S\left(\tfrac{g}{\hbar} L_{int} \right) = \underset{k \in \mathbb{N}}{\sum} \frac{g^k}{\hbar^k k!} T( \underset{k \, \text{factors}}{\underbrace{L_{int} \cdots L_{int}}} ) \end{displaymath} \item the further $\hbar$-dependence of the [[time-ordered product]] $T(\cdots)$ is \begin{displaymath} T(L_{int} L_{int}) = prod \circ \exp\left( \hbar \int \omega_{F}(x,y) \frac{\delta}{\delta \phi(x)} \otimes \frac{\delta}{\delta \phi(y)} \right) ( L_{int} \otimes L_{int} ) \,, \end{displaymath} \end{enumerate} where $\omega_F$ denotes the [[Feynman propagator]] and $\phi(x)$ the field observable at point $x$ (where we are notationally suppressing the internal degrees of freedom of the fields for simplicity, writing them as [[scalar fields]], because this is all that affects the counting of the $\hbar$ powers). The resulting terms of the S-matrix series are thus labeled by \begin{enumerate}% \item the number of factors of the [[interaction]] $L_{int}$, these are the [[vertices]] of the corresponding Feynman diagram and hence each contibute with $\hbar^{-1}$ \item the number of integrals over the Feynman propagator $\omega_F$, which correspond to the edges of the Feynman diagram, and each contribute with $\hbar^1$. \end{enumerate} Now the formula for the [[Euler characteristic of planar graphs]] says that the number of regions in a plane that are encircled by edges, the \emph{faces} here thought of as the number of ``loops'', is \begin{displaymath} L(\Gamma) = 1 + E(\Gamma) - V(\Gamma) \,. \end{displaymath} Hence a planar Feynman diagram $\Gamma$ contributes with \begin{displaymath} \hbar^{L(\Gamma)-1} \,. \end{displaymath} So far this is the discussion for internal edges. An actual scattering matrix element is of the form \begin{displaymath} \langle \psi_{out} \vert S\left(\tfrac{g}{\hbar} L_{int} \right) \vert \psi_{in} \rangle \,, \end{displaymath} where \begin{displaymath} \vert \psi_{in}\rangle \propto \tfrac{1}{\sqrt{\hbar^{n_{in}}}} \phi^\dagger(k_1) \cdots \phi^\dagger(k_{n_{in}}) \vert vac \rangle \end{displaymath} is a state of $n_{in}$ free field quanta and similarly \begin{displaymath} \vert \psi_{out}\rangle \propto \tfrac{1}{\sqrt{\hbar^{n_{out}}}} \phi^\dagger(k_1) \cdots \phi^\dagger(k_{n_{out}}) \vert vac \rangle \end{displaymath} is a state of $n_{out}$ field quanta. The normalization of these states, in view of the commutation relation $[\phi(k), \phi^\dagger(q)] \propto \hbar$, yields the given powers of $\hbar$. This means that an actual [[scattering amplitude]] given by a [[Feynman diagram]] $\Gamma$ with $E_{ext}(\Gamma)$ external vertices scales as \begin{displaymath} \hbar^{L(\Gamma) - 1 + E_{ext}(\Gamma)/2 } \,. \end{displaymath} (For the analogous discussion of the dependence on the actual [[quantum observables]] on $\hbar$ given by [[Bogoliubov's formula]], see \href{Bogoliubov's+formula#PowersInPlancksConstant}{there}.) \end{remark} \end{document}