\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A first idea of quantum field theory -- Fields} \hypertarget{Fields}{}\subsection*{{Fields}}\label{Fields} In this chapter we discuss these topics: \begin{itemize}% \item \emph{\hyperlink{FieldBundles}{Field bundles}} \item \emph{\hyperlink{NonFiniteDimensionalGeometry}{Spaces of field histories}} \item \emph{\hyperlink{InfinitesimalGeometry}{Infinitesimal geometry}} \item \emph{\hyperlink{Supergeometry}{Fermion fields and Supergeometry}} \end{itemize} $\,$ A [[field history]] on a given [[spacetime]] $\Sigma$ (a history of spatial [[field configurations]], see remark \ref{FieldHistoriesAsHistoriesOfFieldConfigurations} below) is a [[quantity]] assigned to each point of spacetime (each [[event]]), such that this assignment varies smoothly with spacetime points. For instance an \emph{[[electromagnetic field]] [[field history|history]]} (example \ref{Electromagnetism} below) is at each point of spacetime a collection of [[vectors]] that encode the direction in which a [[charged particle]] passing through that point would feel a [[force]] (the ``[[Lorentz force]]'', see example \ref{Electromagnetism} below). This is readily formalized (def. \ref{FieldsAndFieldBundles} below): If $F$ denotes the [[smooth manifold]] of ``values'' that the given kind of field may take at any spacetime point, then a field history $\Phi$ is modeled as a [[smooth function]] from spacetime to this space of values: \begin{displaymath} \Phi \;\colon\; \Sigma \longrightarrow F \,. \end{displaymath} It will be useful to unify [[spacetime]] and the space of [[field (physics)|field]] values (the [[field fiber]]) into a single manifold, the [[Cartesian product]] \begin{displaymath} E \;\coloneqq\; \Sigma \times F \end{displaymath} and to think of this equipped with the [[projection]] map onto the first factor as a [[fiber bundle]] of spaces of field values over spacetime \begin{displaymath} \itexarray{ E &\coloneqq& \Sigma \times F \\ {}^{\mathllap{fb}}\downarrow & \swarrow_{\mathrlap{pr_1}} \\ \Sigma } \,. \end{displaymath} This is then called the \emph{[[field bundle]]}, which specifies the kind of values that the given field species may take at any point of spacetime. Since the space $F$ of field values is the [[fiber]] of this [[fiber bundle]] (def. \ref{FiberBundle}), it is sometimes also called the \emph{[[field fiber]]}. (See also at \emph{[[fiber bundles in physics]]}.) Given a [[field bundle]] $E \overset{fb}{\to}\Sigma$, then a \emph{[[field history]]} is a [[section]] of that bundle (def. \ref{Sections}). The discussion of [[field theory]] concerns the [[space of field histories|space of all possible field histories]], hence the [[space of sections]] of the [[field bundle]] (example \ref{DiffeologicalSpaceOfFieldHistories} below). This is a very ``large'' [[generalized smooth space]], called a \emph{[[diffeological space]]} (def. \ref{DiffeologicalSpace} below). Or rather, in the presence of [[fermion fields]] such as the [[Dirac field]] (example \ref{DiracFieldBundle} below), the [[Pauli exclusion principle]] demands that the [[field bundle]] is a [[supermanifold|super-manifold]], and that the fermionic [[space of field histories]] (example \ref{DiracSpaceOfFieldHistories} below) is a [[supergeometry|super-geometric]] [[generalized smooth space]]: a \emph{[[super smooth set]]} (def. \ref{SuperFormalSmoothSet} below). This smooth structure on the [[space of field histories]] will be crucial when we discuss [[observables]] of a [[field theory]] \hyperlink{Observables}{below}, because these are smooth functions on the [[space of field histories]]. In particular it is this smooth structure which allows to derive that \emph{linear} observables of a [[free field theory]] are given by [[distributions]] (prop. \ref{LinearObservablesAreTheCompactlySupportedDistributions}) below. Among these are the point evaluation observables ([[delta distributions]]) which are traditionally denoted by the same symbol as the [[field histories]] themselves. Hence there are these aspects of the concept of ``[[field (physics)|field]]'' in [[physics]], which are closely related, but crucially different: $\,$ \textbf{aspects of the concept of [[field (physics)|fields]]} \newline | averaging of [[observable|field observable]] | $\alpha^\ast \mapsto \underset{\Sigma}{\int} \alpha^\ast_a(x) \mathbf{\Phi}^a(x) \, dvol_\Sigma(x)$ | $\Gamma_{\Sigma,cp}(E^\ast) \to Obs(E_{scp},\mathbf{L})$ | [[operator-valued distribution|observable-valued distribution]] | def. \ref{RegularLinearFieldObservables} | | [[algebra of quantum observables]] | $\left( Obs(E,\mathbf{L})_{\mu c},\, \star\right)$ | $\mathbb{C}Alg$ | [[non-commutative algebra]] [[structure]] on [[observable|field observables]] | def. \ref{WickAlgebraOfFreeQuantumField}, def. \ref{GeneratingFunctionsForCorrelationFunctions} | $\,$ \textbf{[[field bundles]]} \begin{defn} \label{FieldsAndFieldBundles}\hypertarget{FieldsAndFieldBundles}{} \textbf{([[field (physics)|fields]] and [[field histories]])} Given a [[spacetime]] $\Sigma$, then a \emph{[[type]] of [[field|fields]]} on $\Sigma$ is a [[smooth set|smooth]] [[fiber bundle]] (def. \ref{FiberBundle}) \begin{displaymath} \itexarray{E \\ \downarrow^{\mathrlap{fb}} \\ \Sigma } \end{displaymath} called the \emph{[[field bundle]]}, Given a [[type]] of [[field|fields]] on $\Sigma$ this way, then a \emph{[[field history]]} of that type on $\Sigma$ is a [[term]] of that [[type]], hence is a smooth [[section]] (def. \ref{Sections}) of this [[bundle]], namely a [[smooth function]] of the form \begin{displaymath} \Phi \;\colon\; \Sigma \longrightarrow E \end{displaymath} such that composed with the [[projection]] map it is the [[identity function]], i.e. such that \begin{displaymath} fb \circ \Phi = id \phantom{AAAAAAA} \itexarray{ && E \\ & {}^{\mathllap{\Phi}}\nearrow & \downarrow^{\mathrlap{fb}} \\ \Sigma & = & \Sigma } \,. \end{displaymath} The set of such [[sections]]/[[field histories]] is to be denoted \begin{equation} \Gamma_\Sigma(E) \;\coloneqq\; \left\{ \itexarray{ && E \\ & {}^{\mathllap{\Phi}}\nearrow & \downarrow^{\mathrlap{fb}} \\ \Sigma &=& \Sigma } \phantom{fb} \right\} \label{SetOfFieldHistories}\end{equation} \end{defn} \begin{remark} \label{FieldHistoriesAsHistoriesOfFieldConfigurations}\hypertarget{FieldHistoriesAsHistoriesOfFieldConfigurations}{} \textbf{([[field histories]] are histories of spatial [[field configurations]])} Given a [[section]] $\Phi \in \Gamma_\Sigma(E)$ of the [[field bundle]] (def. \ref{FieldsAndFieldBundles}) and given a [[spacelike]] (def. \ref{SpacelikeTimelikeLightlike}) [[submanifold]] $\Sigma_p \hookrightarrow \Sigma$ (def. \ref{SmoothManifoldInsideDiffeologicalSpaces}) of [[spacetime]] in [[codimension]] 1, then the [[restriction]] $\Phi\vert_{\Sigma_p}$ of $\Phi$ to $\Sigma_p$ may be thought of as a \emph{[[field configuration]]} in space. As different spatial slices $\Sigma_p$ are chosen, one obtains such field configurations \emph{at different times}. It is in this sense that the entirety of a section $\Phi \in \Gamma_\Sigma(E)$ is a \emph{history} of field configurations, hence a [[field history]] (def \ref{FieldsAndFieldBundles}). \end{remark} \begin{remark} \label{PossibleFieldHistories}\hypertarget{PossibleFieldHistories}{} \textbf{([[possible worlds|possible]] field histories)} After we give the set $\Gamma_\Sigma(E)$ of field histories \eqref{SetOfFieldHistories} [[differential geometry|differential geometric]] structure, below in example \ref{DiffeologicalSpaceOfFieldHistories} and example \ref{SupergeometricSpaceOfFieldHistories}, we call it the \emph{[[space of field histories]]}. This should be read as space of \emph{[[possibility|possible]]} field histories; containing all field histories that qualify as being of the [[type]] specified by the [[field bundle]] $E$. After we obtain [[equations of motion]] below in def. \ref{EulerLagrangeEquationsOnTrivialVectorFieldBundleOverMinkowskiSpacetime}, these serve as the ``laws of nature'' that field histories should obey, and they define the subspace of those field histories that do solve the equations of motion; this will be denoted \begin{displaymath} \Gamma_\Sigma(E)_{\delta_{EL}\mathbf{L}= 0} \overset{\phantom{AAA}}{\hookrightarrow} \Gamma_\Sigma(E) \end{displaymath} and called the \emph{[[on-shell]] [[space of field histories]]} \eqref{InclusionOfOnShellSpaceOfFieldHistories}. \end{remark} For the time being, not to get distracted from the basic idea of [[quantum field theory]], we will focus on the following simple special case of field bundles: \begin{example} \label{TrivialVectorBundleAsAFieldBundle}\hypertarget{TrivialVectorBundleAsAFieldBundle}{} \textbf{([[trivial vector bundle]] as a [[field bundle]])} In applications the [[field fiber]] $F = V$ is often a [[finite dimensional vector space]]. In this case the [[trivial bundle|trivial]] [[field bundle]] with [[fiber]] $F$ is of course a \emph{[[trivial vector bundle|trivial]] [[vector bundle]]} (def. \ref{VectorBundle}). Choosing any [[linear basis]] $(\phi^a)_{a = 1}^s$ of the field fiber, then over [[Minkowski spacetime]] (def. \ref{MinkowskiSpacetime}) we have canonical [[coordinates]] on the total space of the field bundle \begin{displaymath} ( (x^\mu), ( \phi^a ) ) \,, \end{displaymath} where the index $\mu$ ranges from $0$ to $p$, while the index $a$ ranges from 1 to $s$. If this trivial vector bundle is regarded as a [[field bundle]] according to def. \ref{FieldsAndFieldBundles}, then a field history $\Phi$ is equivalently an $s$-[[tuple]] of [[real number|real]]-valued [[smooth functions]] $\Phi^a \colon \Sigma \to \mathbb{R}$ on spacetime: \begin{displaymath} \Phi = ( \Phi^a )_{a = 1}^s \,. \end{displaymath} \end{example} \begin{example} \label{RealScalarFieldBundle}\hypertarget{RealScalarFieldBundle}{} \textbf{([[field bundle]] for [[real scalar field]])} If $\Sigma$ is a [[spacetime]] and if the [[field fiber]] \begin{displaymath} F \coloneqq \mathbb{R} \end{displaymath} is simply the [[real line]], then the corresponding trivial [[field bundle]] (def. \ref{FieldsAndFieldBundles}) \begin{displaymath} \itexarray{ \Sigma \times \mathbb{R} \\ {}^{\mathllap{pr_1}}\downarrow \\ \Sigma } \end{displaymath} is the \emph{[[trivial fiber bundle|trivial]] [[real line bundle]]} (a special case of example \ref{TrivialVectorBundleAsAFieldBundle}) and the corresponding [[field (physics)|field]] type (def. \ref{FieldsAndFieldBundles}) is called the \emph{[[real scalar field]]} on $\Sigma$. A configuration of this field is simply a [[smooth function]] on $\Sigma$ with values in the [[real numbers]]: \begin{equation} \Gamma_\Sigma(\Sigma \times \mathbb{R}) \;\simeq\; C^\infty(\Sigma) \,. \label{SpaceOfFieldHistoriesOfRealScalarField}\end{equation} \end{example} \begin{example} \label{Electromagnetism}\hypertarget{Electromagnetism}{} \textbf{([[field bundle]] for [[electromagnetic field]])} On [[Minkowski spacetime]] $\Sigma$ (def. \ref{MinkowskiSpacetime}), let the [[field bundle]] (def. \ref{FieldsAndFieldBundles}) be given by the [[cotangent bundle]] \begin{displaymath} E \coloneqq T^\ast \Sigma \,. \end{displaymath} This is a [[trivial vector bundle]] (example \ref{TrivialVectorBundleAsAFieldBundle}) with canonical [[field (physics)|field]] coordinates $(a_\mu)$. A [[section]] of this bundle, hence a [[field history]], is a [[differential 1-form]] \begin{displaymath} A \in \Gamma_\Sigma(T^\ast \Sigma) = \Omega^1(\Sigma) \end{displaymath} on [[spacetime]] (def. \ref{Differential1FormsOnCartesianSpaces}). Interpreted as a [[field history]] of the [[electromagnetic field]] on $\Sigma$, this is often called the \emph{[[vector potential]]}. Then the [[de Rham differential]] (def. \ref{deRhamDifferential}) of the [[vector potential]] is a [[differential 2-form]] \begin{displaymath} F \coloneqq d A \end{displaymath} known as the \emph{[[Faraday tensor]]}. In the canonical coordinate basis 2-forms this may be expanded as \begin{equation} F = \underoverset{i = 1}{p}{\sum} E_i d x^0 \wedge d x^i + \underset{1 \leq i \lt j \leq p}{\sum} B_{i j} d x^i \wedge d x^j \,. \label{TensorFaraday}\end{equation} Here $(E_i)_{i = 1}^p$ are called the components of the \emph{[[electric field]]}, while $(B_{i j})$ are called the components of the \emph{[[magnetic field]]}. \end{example} \begin{example} \label{YangMillsFieldOverMinkowski}\hypertarget{YangMillsFieldOverMinkowski}{} \textbf{([[field bundle]] for [[Yang-Mills field]] over [[Minkowski spacetime]])} Let $\mathfrak{g}$ be a [[Lie algebra]] of [[finite number|finite]] [[dimension]] with [[linear basis]] $(t_\alpha)$, in terms of which the [[Lie bracket]] is given by \begin{equation} [t_\alpha, t_\beta] \;=\; \gamma^\gamma{}_{\alpha \beta} t_\gamma \,. \label{LieAlgebraStructureConstants}\end{equation} Over [[Minkowski spacetime]] $\Sigma$ (def. \ref{MinkowskiSpacetime}), consider then the [[field bundle]] which is the [[cotangent bundle]] [[tensor product|tensored]] with the [[Lie algebra]] $\mathfrak{g}$ \begin{displaymath} E \coloneqq T^\ast \Sigma \otimes \mathfrak{g} \,. \end{displaymath} This is the [[trivial vector bundle]] (example \ref{TrivialVectorBundleAsAFieldBundle}) with induced [[field (physics)|field]] [[coordinates]] \begin{displaymath} ( a_\mu^\alpha ) \,. \end{displaymath} A [[section]] of this bundle is a [[Lie algebra-valued differential 1-form]] \begin{displaymath} A \in \Gamma_\Sigma(T^\ast \Sigma \otimes \mathfrak{g}) = \Omega^1(\Sigma, \mathfrak{g}) \,. \end{displaymath} with components \begin{displaymath} A^\ast(a_\mu^\alpha) = A^\alpha_\mu \,. \end{displaymath} This is called a [[field history]] for \emph{[[Yang-Mills theory|Yang-Mills]] [[gauge theory]]} (at least if $\mathfrak{g}$ is a \emph{[[semisimple Lie algebra]]}, see example \ref{YangMillsLagrangian} below). For $\mathfrak{g} = \mathbb{R}$ is the [[line Lie algebra]], this reduces to the case of the [[electromagnetic field]] (example \ref{Electromagnetism}). For $\mathfrak{g} = \mathfrak{su}(3)$ this is a [[field (physics)|field]] history for the [[gauge field]] of the [[strong nuclear force]] in [[quantum chromodynamics]]. \end{example} For readers familiar with the concepts of \emph{[[principal bundles]]} and \emph{[[connections on a bundle]]} we include the following example \ref{YangMillsFieldInInstantonSector} which generalizes the [[Yang-Mills field]] over [[Minkowski spacetime]] from example \ref{YangMillsFieldOverMinkowski} to the situation over general [[spacetimes]]. \begin{example} \label{YangMillsFieldInInstantonSector}\hypertarget{YangMillsFieldInInstantonSector}{} \textbf{(general [[Yang-Mills field]] in fixed [[instanton|topological sector]])} Let $\Sigma$ be any [[spacetime]] [[manifold]] and let $G$ be a [[compact Lie group]] with [[Lie algebra]] denoted $\mathfrak{g}$. Let $P \overset{is}{\to} \Sigma$ be a $G$-[[principal bundle]] and $\nabla_0$ a chosen [[connection on a bundle|connection]] on it, to be called the [[background field|background]] $G$-[[Yang-Mills theory|Yang-Mills]] field. Then the [[field bundle]] (def. \ref{FieldsAndFieldBundles}) for $G$-[[Yang-Mills theory]] \emph{in the [[instanton|topological sector]]} $P$ is the [[tensor product of vector bundles]] \begin{displaymath} E \coloneqq \left(P \times^{ad}_G \mathfrak{g}\right) \otimes_\Sigma \left( T^\ast \Sigma \right) \end{displaymath} of the [[adjoint bundle]] of $P$ and the [[cotangent bundle]] of $\Sigma$. With the choice of $\nabla_0$, every (other) connection $\nabla$ on $P$ uniquely decomposes as \begin{displaymath} \nabla = \nabla_0 + A \,, \end{displaymath} where \begin{displaymath} A \in \Gamma_\Sigma(E) \end{displaymath} is a [[section]] of the above [[field bundle]], hence a [[Yang-Mills field|Yang-Mills]] [[field history]]. \end{example} The [[electromagnetic field]] (def. \ref{Electromagnetism}) and the [[Yang-Mills field]] (def. \ref{YangMillsFieldOverMinkowski}, def. \ref{YangMillsFieldInInstantonSector}) with [[differential 1-forms]] as [[field histories]] are the basic examples of \emph{[[gauge fields]]} (we consider this in more detail below in \emph{\hyperlink{GaugeSymmetries}{Gauge symmetries}}). There are also \emph{[[higher gauge fields]]} with [[differential n-forms]] as [[field histories]]: \begin{example} \label{BField}\hypertarget{BField}{} \textbf{([[field bundle]] for [[B-field]])} On [[Minkowski spacetime]] $\Sigma$ (def. \ref{MinkowskiSpacetime}), let the [[field bundle]] (def. \ref{FieldsAndFieldBundles}) be given by the skew-symmetrized [[tensor product of vector bundles]] of the [[cotangent bundle]] with itself \begin{displaymath} E \coloneqq \wedge^2_\Sigma T^\ast \Sigma \,. \end{displaymath} This is a [[trivial vector bundle]] (example \ref{TrivialVectorBundleAsAFieldBundle}) with canonical [[field (physics)|field]] coordinates $(b_{\mu \nu})$ subject to \begin{displaymath} b_{\mu \nu} \;=\; - b_{\nu \mu} \,. \end{displaymath} A [[section]] of this bundle, hence a [[field history]], is a [[differential 2-form]] (def. \ref{DifferentialnForms}) \begin{displaymath} B \in \Gamma_\Sigma(\wedge^2_\Sigma T^\ast \Sigma) = \Omega^2(\Sigma) \end{displaymath} on [[spacetime]]. \end{example} $\,$ \textbf{[[space of field histories]]} Given any [[field bundle]], we will eventually need to regard the set of all [[field histories]] $\Gamma_\Sigma(E)$ as a ``[[smooth set]]'' itself, a smooth \emph{[[space of sections]]}, to which constructions of [[differential geometry]] apply (such as for the discussion of [[observables]] and [[states]] \hyperlink{Observables}{below} ). Notably we need to be talking about [[differential forms]] on $\Gamma_\Sigma(E)$. However, a [[space of sections]] $\Gamma_\Sigma(E)$ does not in general carry the structure of a [[smooth manifold]]; and it carries the correct smooth structure of an [[infinite dimensional manifold]] only if $\Sigma$ is a [[compact space]] (see at \emph{[[manifold structure of mapping spaces]]}). Even if it does carry [[infinite dimensional manifold]] structure, inspection shows that this is more [[structure]] than actually needed for the discussion of [[field theory]]. Namely it turns out below that all we need to know is what counts as a \emph{smooth family} of [[sections]]/[[field histories]], hence which [[functions]] of [[sets]] \begin{displaymath} \Phi_{(-)} \;\colon\; \mathbb{R}^n \longrightarrow \Gamma_\Sigma(E) \end{displaymath} from any [[Cartesian space]] $\mathbb{R}^n$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) into $\Gamma_\Sigma(E)$ count as [[smooth functions]], subject to some basic consistency condition on this choice. This [[structure]] on $\Gamma_\Sigma(E)$ is called the structure of a \emph{[[diffeological space]]}: \begin{defn} \label{DiffeologicalSpace}\hypertarget{DiffeologicalSpace}{} \textbf{([[diffeological space]])} A \emph{[[diffeological space]]} $X$ is \begin{enumerate}% \item a [[set]] $X_s \in$ [[Set]]; \item for each $n \in \mathbb{N}$ a choice of [[subset]] \begin{displaymath} X(\mathbb{R}^n) \subset Hom_{Set}(\mathbb{R}^n_s, X_s) = \left\{ \mathbb{R}^n_s \to X_s \right\} \end{displaymath} of the [[function set|set of functions]] from the underlying set $\mathbb{R}^n_s$ of $\mathbb{R}^n$ to $X_s$, to be called the \emph{smooth functions} or \emph{plots} from $\mathbb{R}^n$ to $X$; \item for each [[smooth function]] $f \;\colon\; \mathbb{R}^{n_1} \longrightarrow \mathbb{R}^{n_2}$ between [[Cartesian spaces]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) a choice of function \begin{displaymath} f^\ast \;\colon\; X(\mathbb{R}^{n_2}) \longrightarrow X(\mathbb{R}^{n_1}) \end{displaymath} to be thought of as the precomposition operation \begin{displaymath} \left( \mathbb{R}^{n_2} \overset{\Phi}{\longrightarrow} X \right) \;\overset{f^\ast}{\mapsto}\; \left( \mathbb{R}^{n_1} \overset{f}{\to} \mathbb{R}^{n_2} \overset{\Phi}{\to} X \right) \end{displaymath} \end{enumerate} such that \begin{enumerate}% \item ([[constant functions]] are smooth) \begin{displaymath} X(\mathbb{R}^0) = X_s \,, \end{displaymath} \item ([[functor|functoriality]]) \begin{enumerate}% \item If $id_{\mathbb{R}^n} \;\colon\; \mathbb{R}^n \to \mathbb{R}^n$ is the [[identity function]] on $\mathbb{R}^n$, then $\left(id_{\mathbb{R}^n}\right)^\ast \;\colon\; X(\mathbb{R}^n) \to X(\mathbb{R}^n)$ is the identity function on the set of plots $X(\mathbb{R}^n)$; \item If $\mathbb{R}^{n_1} \overset{f}{\to} \mathbb{R}^{n_2} \overset{g}{\to} \mathbb{R}^{n_3}$ are two [[composition|composable]] [[smooth functions]] between [[Cartesian spaces]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}), then pullback of plots along them consecutively equals the pullback along the [[composition]]: \begin{displaymath} f^\ast \circ g^\ast = (g \circ f)^\ast \end{displaymath} i.e. \begin{displaymath} \itexarray{ && X(\mathbb{R}^{n_2}) \\ & {}^{\mathllap{f^\ast}}\swarrow && \nwarrow^{\mathrlap{g^\ast}} \\ X(\mathbb{R}^{n_1}) && \underset{ (g \circ f)^\ast }{\longleftarrow} && X(\mathbb{R}^{n_3}) } \end{displaymath} \end{enumerate} \item ([[sheaf|gluing]]) If $\{ U_i \overset{f_i}{\to} \mathbb{R}^n\}_{i \in I}$ is a [[differentiably good open cover]] of a [[Cartesian space]] (def. \ref{DifferentiablyGoodOpenCover}) then the function which restricts $\mathbb{R}^n$-plots of $X$ to a set of $U_i$-plots \begin{displaymath} X(\mathbb{R}^n) \overset{( (f_i)^\ast )_{i \in I} }{\hookrightarrow} \underset{i \in I}{\prod} X(U_i) \end{displaymath} is a [[bijection]] onto the set of those [[tuples]] $(\Phi_i \in X(U_i))_{i \in I}$ of plots, which are ``[[matching families]]'' in that they agree on [[intersections]]: \begin{displaymath} \phi_i\vert_{U_i \cap U_j} = \phi_j \vert_{U_i \cap U_j} \phantom{AAAAAA} \itexarray{ && U_i \cap U_j \\ & \swarrow && \searrow \\ U_i && && U_j \\ & {}_{\mathrlap{\Phi_i}}\searrow && \swarrow_{\mathrlap{\Phi_j}} \\ && X } \end{displaymath} \end{enumerate} Finally, given $X_1$ and $X_2$ two diffeological spaces, then a [[smooth function]] between them \begin{displaymath} f \;\colon\; X_1 \longrightarrow X_2 \end{displaymath} is \begin{itemize}% \item a [[function]] of the underlying sets \begin{displaymath} f_s \;\colon\; (X_1)_s \longrightarrow (X_2)_s \end{displaymath} \end{itemize} such that \begin{itemize}% \item for $\Phi \in X(\mathbb{R}^n)$ a plot of $X_1$, then the [[composition]] $f_s \circ \Phi_s$ is a plot $f_\ast(\Phi)$ of $X_2$: \begin{displaymath} \itexarray{ && \mathbb{R}^n \\ & {}^{\mathllap{\Phi}}\swarrow && \searrow^{\mathrlap{f_\ast(\Phi)}} \\ X_1 && \underset{f}{\longrightarrow} && X_2 } \,. \end{displaymath} \end{itemize} (Stated more [[category theory|abstractly]], this says simply that [[diffeological spaces]] are the [[concrete sheaves]] on the [[site]] of [[Cartesian spaces]] from def. \ref{DifferentiablyGoodOpenCover}.) \end{defn} For more background on [[diffeological spaces]] see also \emph{[[geometry of physics -- smooth sets]]}. \begin{example} \label{SmoothManifoldsAreDiffeologicalSpaces}\hypertarget{SmoothManifoldsAreDiffeologicalSpaces}{} \textbf{([[Cartesian spaces]] are [[diffeological spaces]])} Let $X$ be a [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) Then it becomes a [[diffeological space]] (def. \ref{DiffeologicalSpace}) by declaring its plots $\Phi \in X(\mathbb{R}^n)$ to the ordinary [[smooth functions]] $\Phi \colon \mathbb{R}^n \to X$. Under this identification, a function $f \;\colon\; (X_1)_s \to (X_2)_s$ between the underlying sets of two [[Cartesian spaces]] is a [[smooth function]] in the ordinary sense precisely if it is a smooth function in the sense of [[diffeological spaces]]. Stated more [[category theory|abstractly]], this statement is an example of the \emph{[[Yoneda embedding]]} over a \emph{[[subcanonical site]]}. More generally, the same construction makes every [[smooth manifold]] a [[smooth set]]. \end{example} \begin{example} \label{DiffeologicalSpaceOfFieldHistories}\hypertarget{DiffeologicalSpaceOfFieldHistories}{} \textbf{([[diffeological space|diffeological]] [[space of field histories]])} Let $E \overset{fb}{\to} \Sigma$ be a smooth [[field bundle]] (def. \ref{FieldsAndFieldBundles}). Then the set $\Gamma_\Sigma(E)$ of [[field histories]]/[[sections]] (def. \ref{FieldsAndFieldBundles}) becomes a [[diffeological space]] (def. \ref{DiffeologicalSpace}) \begin{equation} \Gamma_\Sigma(E) \in DiffeologicalSpaces \label{SpaceOfFieldHistories}\end{equation} by declaring that a smooth family $\Phi_{(-)}$ of field histories, parameterized over any [[Cartesian space]] $U$ is a smooth function out of the [[Cartesian product]] manifold of $\Sigma$ with $U$ \begin{displaymath} \itexarray{ U \times \Sigma &\overset{\Phi_{(-)}(-)}{\longrightarrow}& E \\ (u,x) &\mapsto& \Phi_u(x) } \end{displaymath} such that for each $u \in U$ we have $p \circ \Phi_{u}(-) = id_\Sigma$, i.e. \begin{displaymath} \itexarray{ && E \\ & {}^{\mathllap{\Phi_{(-)}(-)}}\nearrow & \downarrow^{\mathrlap{fb}} \\ U \times \Sigma &\underset{pr_2}{\longrightarrow}& \Sigma } \,. \end{displaymath} \end{example} The following example \ref{FrechetManifoldsAreDiffeologicalSpaces} is included only for readers who wonder how [[infinite-dimensional manifolds]] fit in. Since we will never actually use [[infinite-dimensional manifold]]-structure, this example is may be ignored. \begin{example} \label{FrechetManifoldsAreDiffeologicalSpaces}\hypertarget{FrechetManifoldsAreDiffeologicalSpaces}{} \textbf{([[Fréchet manifolds]] are [[diffeological spaces]])} Consider the particular type of [[infinite-dimensional manifolds]] called \emph{[[Fréchet manifolds]]}. Since ordinary [[smooth manifolds]] $U$ are an example, for $X$ a [[Fréchet manifold]] there is a concept of [[smooth functions]] $U \to X$. Hence we may give $X$ the structure of a [[diffeological space]] (def. \ref{DiffeologicalSpace}) by declaring the plots over $U$ to be these smooth functions $U \to X$, with the evident postcomposition action. It turns out that then that for $X$ and $Y$ two [[Fréchet manifolds]], there is a [[natural bijection]] between the [[smooth functions]] $X \to Y$ between them regarded as [[Fréchet manifolds]] and regarded as [[diffeological spaces]. Hence it does not matter which of the two perspectives we take (unless of course a [[diffeological space]] more general than a [[Fréchet manifolds]] enters the picture, at which point the second definition generalizes, whereas the first does not). Stated more [[category theory|abstractly]], this means that [[Fréchet manifolds]] form a [[full subcategory]] of that of [[diffeological spaces]] (\href{Fréchet+manifold#FFEmbeddingOfFrechetInDiffeological}{this prop.}): \begin{displaymath} FrechetManifolds \hookrightarrow DiffeologicalSpaces \,. \end{displaymath} If $\Sigma$ is a [[compact space|compact]] [[smooth manifold]] and $E \simeq \Sigma \times F \to \Sigma$ is a [[trivial fiber bundle]] with [[fiber]] $F$ a [[smooth manifold]], then the set of [[sections]] $\Gamma_\Sigma(E)$ carries a standard structure of a [[Fréchet manifold]] (see at \emph{[[manifold structure of mapping spaces]]}). Under the above inclusion of [[Fréchet manifolds]] into [[diffeological spaces]], this [[smooth structure]] agrees with that from example \ref{DiffeologicalSpaceOfFieldHistories} (see \href{Fréchet+manifold#CompatibilityWithDiffeologicalMappingSpaces}{this prop.}) \end{example} Once the step from [[smooth manifolds]] to [[diffeological spaces]] (def. \ref{DiffeologicalSpace}) is made, characterizing the [[smooth structure]] of the space entirely by how we may probe it by mapping smooth Cartesian spaces into it, it becomes clear that the underlying set $X_s$ of a diffeological space $X$ is not actually crucial to support the concept: The space is already entirely defined [[structuralism|structurally]] by the system of smooth plots it has, and the underlying set $X_s$ is recovered from these as the set of plots from the point $\mathbb{R}^0$. This is crucial for [[field theory]]: the [[spaces of field histories]] of [[fermionic fields]] (def. \ref{FermionicBosonicFields} below) such as the \emph{[[Dirac field]]} (example \ref{DiracSpaceOfFieldHistories} below) do not have underlying sets of points the way [[diffeological spaces]] have. Informally, the reason is that a point is a [[bosonic]] object, while and the nature of [[fermionic fields]] is [[antimodal type|the opposite of]] bosonic. But we may just as well drop the mentioning of the underlying set $X_s$ in the definition of [[generalized smooth spaces]]. By simply stripping this requirement off of def. \ref{DiffeologicalSpace} we obtain the following more general and more useful definition (still ``bosonic'', though, the [[supergeometry|supergeometric]] version is def. \ref{SuperFormalSmoothSet} below): \begin{defn} \label{SmoothSet}\hypertarget{SmoothSet}{} \textbf{([[smooth set]])} A \emph{[[smooth set]]} $X$ is \begin{enumerate}% \item for each $n \in \mathbb{N}$ a choice of [[set]] \begin{displaymath} X(\mathbb{R}^n) \in Set \end{displaymath} to be called the set of \emph{smooth functions} or \emph{plots} from $\mathbb{R}^n$ to $X$; \item for each [[smooth function]] $f \;\colon\; \mathbb{R}^{n_1} \longrightarrow \mathbb{R}^{n_2}$ between [[Cartesian spaces]] a choice of function \begin{displaymath} f^\ast \;\colon\; X(\mathbb{R}^{n_2}) \longrightarrow X(\mathbb{R}^{n_1}) \end{displaymath} to be thought of as the precomposition operation \begin{displaymath} \left( \mathbb{R}^{n_2} \overset{\Phi}{\longrightarrow} X \right) \;\overset{f^\ast}{\mapsto}\; \left( \mathbb{R}^{n_1} \overset{f}{\to} \mathbb{R}^{n_2} \overset{\Phi}{\to} X \right) \end{displaymath} \end{enumerate} such that \begin{enumerate}% \item ([[functor|functoriality]]) \begin{enumerate}% \item If $id_{\mathbb{R}^n} \;\colon\; \mathbb{R}^n \to \mathbb{R}^n$ is the [[identity function]] on $\mathbb{R}^n$, then $\left(id_{\mathbb{R}^n}\right)^\ast \;\colon\; X(\mathbb{R}^n) \to X(\mathbb{R}^n)$ is the [[identity function]] on the set of plots $X(\mathbb{R}^n)$. \item If $\mathbb{R}^{n_1} \overset{f}{\to} \mathbb{R}^{n_2} \overset{g}{\to} \mathbb{R}^{n_3}$ are two [[composition|composable]] [[smooth functions]] between [[Cartesian spaces]], then consecutive pullback of plots along them equals the pullback along the [[composition]]: \begin{displaymath} f^\ast \circ g^\ast = (g \circ f)^\ast \end{displaymath} i.e. \begin{displaymath} \itexarray{ && X(\mathbb{R}^{n_2}) \\ & {}^{\mathllap{f^\ast}}\swarrow && \nwarrow^{\mathrlap{g^\ast}} \\ X(\mathbb{R}^{n_1}) && \underset{ (g \circ f)^\ast }{\longleftarrow} && X(\mathbb{R}^{n_3}) } \end{displaymath} \end{enumerate} \item ([[sheaf|gluing]]) If $\{ U_i \overset{f_i}{\to} \mathbb{R}^n\}_{i \in I}$ is a [[differentiably good open cover]] of a [[Cartesian space]] (def. \ref{DifferentiablyGoodOpenCover}) then the function which restricts $\mathbb{R}^n$-plots of $X$ to a set of $U_i$-plots \begin{displaymath} X(\mathbb{R}^n) \overset{( (f_i)^\ast )_{i \in I} }{\hookrightarrow} \underset{i \in I}{\prod} X(U_i) \end{displaymath} is a [[bijection]] onto the set of those [[tuples]] $(\Phi_i \in X(U_i))_{i \in I}$ of plots, which are ``[[matching families]]'' in that they agree on [[intersections]]: \begin{displaymath} \phi_i\vert_{U_i \cap U_j} = \phi_j \vert_{U_i \cap U_j} \phantom{AAAA} \text{i.e.} \phantom{AAAA} \itexarray{ && U_i \cap U_j \\ & \swarrow && \searrow \\ U_i && && U_j \\ & {}_{\mathrlap{\Phi_i}}\searrow && \swarrow_{\mathrlap{\Phi_j}} \\ && X } \end{displaymath} \end{enumerate} Finally, given $X_1$ and $X_2$ two [[smooth sets]], then a [[smooth function]] between them \begin{displaymath} f \;\colon\; X_1 \longrightarrow X_2 \end{displaymath} is \begin{itemize}% \item for each $n \in \mathbb{N}$ a [[function]] \begin{displaymath} f_\ast(\mathbb{R}^n) \;\colon\; X_1(\mathbb{R}^n) \longrightarrow X_2(\mathbb{R}^n) \end{displaymath} \end{itemize} such that \begin{itemize}% \item for each [[smooth function]] $g \colon \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$ between [[Cartesian spaces]] we have \begin{displaymath} g^\ast_2 \circ f_\ast(\mathbb{R}^{n_2}) = f_\ast(\mathbb{R}^{n_1}) \circ g^\ast_1 \phantom{AAAAA} \text{i.e.} \phantom{AAAAA} \text{i.e.} \phantom{AAAAA} \itexarray{ X_1(\mathbb{R}^{n_2}) &\overset{f_\ast(\mathbb{R}^{n_2})}{\longrightarrow}& X_2(\mathbb{R}^{n_2}) \\ \mathllap{g_1^\ast}\downarrow && \downarrow\mathrlap{g^\ast_2} \\ X_1(\mathbb{R}^{n_1}) &\underset{f_\ast(\mathbb{R}^{n_1})}{\longrightarrow}& X_2(\mathbb{R}^{n_1}) } \end{displaymath} \end{itemize} Stated more [[category theory|abstractly]], this simply says that [[smooth sets]] are the \emph{[[sheaves]] on the [[site]] of [[Cartesian spaces]] from def. \ref{DifferentiablyGoodOpenCover}.} \end{defn} Basing [[differential geometry]] on [[smooth sets]] is an instance of the general approach to [[geometry]] called \emph{[[functorial geometry]]} or \emph{[[topos theory]]}. For more background on this see at \emph{[[geometry of physics -- smooth sets]]}. First we verify that the concept of smooth sets is a consistent generalization: \begin{example} \label{SmoothSetsDiffeologicalSpaces}\hypertarget{SmoothSetsDiffeologicalSpaces}{} \textbf{([[diffeological spaces]] are [[smooth sets]])} Every [[diffeological space]] $X$ (def. \ref{DiffeologicalSpace}) is a [[smooth set]] (def. \ref{SmoothSet}) simply by [[forgetful functor|forgetting]] its underlying set of points and remembering only its sets of plot. In particular therefore each [[Cartesian space]] $\mathbb{R}^n$ is canonically a [[smooth set]] by example \ref{SmoothManifoldsAreDiffeologicalSpaces}. Moreover, given any two [[diffeological spaces]], then the [[morphisms]] $f \colon X \to Y$ between them, regarded as diffeological spaces, are [[natural bijection|the same]] as the morphisms as [[smooth sets]]. Stated more [[category theory|abstractly]], this means that we have [[full subcategory]] inclusions \begin{displaymath} CartesianSpaces \overset{\phantom{AAA}}{\hookrightarrow} DiffeologicalSpaces \overset{\phantom{AAA}}{\hookrightarrow} SmoothSets \,. \end{displaymath} \end{example} Recall, for the next proposition \ref{CartSpYpnedaLemma}, that in the definition \ref{SmoothSet} of a [[smooth set]] $X$ the sets $X(\mathbb{R}^n)$ are abstract sets which are \emph{to be thought of} as would-be smooth functions ``$\mathbb{R}^n \to X$''. Inside def. \ref{SmoothSet} this only makes sense in quotation marks, since inside that definition the smooth set $X$ is only being defined, so that inside that definition there is not yet an actual concept of smooth functions of the form ``$\mathbb{R}^n \to X$''. But now that the definition of [[smooth sets]] and of [[morphisms]] between them has been stated, and seeing that [[Cartesian space]] $\mathbb{R}^n$ are examples of [[smooth sets]], by example \ref{SmoothSetsDiffeologicalSpaces}, there is now an actual concept of smooth functions $\mathbb{R}^n \to X$, namely as smooth sets. For the concept of smooth sets to be consistent, it ought to be true that this \emph{a posteriori} concept of smooth functions from [[Cartesian spaces]] to [[smooth sets]] coincides wth the \emph{a priori} concept, hence that we ``may remove the quotation marks'' in the above. The following proposition says that this is indeed the case: \begin{prop} \label{CartSpYpnedaLemma}\hypertarget{CartSpYpnedaLemma}{} \textbf{(plots of a [[smooth set]] really are the [[smooth functions]] into the smooth set)} Let $X$ be a [[smooth set]] (def. \ref{SmoothSet}). For $n \in \mathbb{R}$, there is a [[natural transformation|natural]] [[function]] \begin{displaymath} Hom_{SmoothSet}(\mathbb{R}^n , X) \overset{\phantom{AA}\simeq\phantom{AA}}{\longrightarrow} X(\mathbb{R}^n) \end{displaymath} from the set of homomorphisms of smooth sets from $\mathbb{R}^n$ (regarded as a smooth set via example \ref{SmoothSetsDiffeologicalSpaces}) to $X$, to the set of plots of $X$ over $\mathbb{R}^n$, given by evaluating on the [[identity function|identity]] plot $id_{\mathbb{R}^n}$. This function is a \emph{[[bijection]]}. This says that the plots of $X$, which initially bootstrap $X$ into being as declaring the \emph{would-be} smooth functions into $X$, end up being the \emph{actual} smooth functions into $X$. \end{prop} \begin{proof} This elementary but profound fact is called the \emph{[[Yoneda lemma]]}, here in its incarnation over the [[site]] of [[Cartesian spaces]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}). \end{proof} A key class of examples of [[smooth sets]] (def. \ref{SmoothSet}) that are not [[diffeological spaces]] (def. \ref{DiffeologicalSpace}) are universal smooth [[moduli spaces]] of [[differential forms]]: \begin{example} \label{UniversalSmoothModuliSpaceOfDifferentialForms}\hypertarget{UniversalSmoothModuliSpaceOfDifferentialForms}{} \textbf{(universal [[smooth set|smooth]] [[moduli spaces]] of [[differential forms]])} For $k \in \mathbb{N}$ there is a [[smooth set]] (def. \ref{SmoothSet}) \begin{displaymath} \mathbf{\Omega}^k \;\in\; SmoothSet \end{displaymath} defined as follows: \begin{enumerate}% \item for $n \in \mathbb{N}$ the set of plots from $\mathbb{R}^n$ to $\mathbf{\Omega}^k$ is the set of smooth [[differential forms|differential k-forms]] on $\mathbb{R}^n$ (def. \ref{DifferentialnForms}) \begin{displaymath} \mathbf{\Omega}^k(\mathbb{R}^n) \;\coloneqq\; \Omega^k(\mathbb{R}^n) \end{displaymath} \item for $f \colon \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$ a [[smooth function]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) the operation of pullback of plots along $f$ is just the [[pullback of differential forms]] $f^\ast$ from prop. \ref{PullbackOfDifferentialForms} \begin{displaymath} \itexarray{ \mathbb{R}^{n_1} && \Omega^k(\mathbb{R}^{n_1}) \\ \downarrow^{\mathrlap{f}} && \uparrow^{\mathrlap{f^\ast}} \\ \mathbb{R}^{n_2} && \Omega^k(\mathbb{R}^{n_2}) } \end{displaymath} \end{enumerate} That this is [[functor|functorial]] is just the standard fact \eqref{PullbackOfDiffereentialFormsCompatibleWithComposition} from prop. \ref{PullbackOfDifferentialForms}. For $k = 1$ the smooth set $\mathbf{\Omega}^0$ actually is a [[diffeological space]], in fact under the identification of example \ref{SmoothSetsDiffeologicalSpaces} this is just the [[real line]]: \begin{displaymath} \mathbf{\Omega}^0 \simeq \mathbb{R}^1 \,. \end{displaymath} But for $k \geq 1$ we have that the set of plots on $\mathbb{R}^0 = \ast$ is a [[singleton]] \begin{displaymath} \mathbf{\Omega}^{k \geq 1}(\mathbb{R}^0) \simeq \{0\} \end{displaymath} consisting just of the zero differential form. The only diffeological space with this property is $\mathbb{R}^0 = \ast$ itself. But $\mathbf{\Omega}^{k \geq 1}$ is far from being that trivial: even though its would-be underlying set is a single point, for all $n \geq k$ it admits an infinite set of plots. Therefore the smooth sets $\mathbf{\Omega}^k$ for $k \geq$ are not diffeological spaces. That the [[smooth set]] $\mathbf{\Omega}^k$ indeed deserves to be addressed as the \emph{universal [[moduli space]] of [[differential n-forms|differential k-forms]]} follows from prop. \ref{CartSpYpnedaLemma}: The universal moduli space of $k$-forms ought to carry a universal differential $k$-forms $\omega_{univ} \in \Omega^k(\mathbf{\Omega}^k)$ such that every differential $k$-form $\omega$ on any $\mathbb{R}^n$ arises as the [[pullback of differential forms]] of this universal one along some \emph{[[modulating morphism]]} $f_\omega \colon X \to \mathbf{\Omega}^k$: \begin{displaymath} \itexarray{ \{\omega\} &\overset{(f_\omega)^\ast}{\longleftarrow}& \{\omega_{univ}\} \\ \\ X &\underset{f_\omega}{\longrightarrow}& \mathbf{\Omega}^k } \end{displaymath} But with prop. \ref{CartSpYpnedaLemma} this is precisely what the definition of the plots of $\mathbf{\Omega}^k$ says. Similarly, all the usual operations on differential form now have their universal archetype on the universal [[moduli spaces]] of differential forms In particular, for $k \in \mathbb{N}$ there is a canonical [[morphism]] of [[smooth sets]] of the form \begin{displaymath} \mathbf{\Omega}^k \overset{\mathbf{d}}{\longrightarrow} \mathbf{\Omega}^{k+1} \end{displaymath} defined over $\mathbb{R}^n$ by the ordinary [[de Rham differential]] (def. \ref{deRhamDifferential}) \begin{equation} \Omega^k(\mathbb{R}^n) \overset{d}{\longrightarrow} \Omega^{k+1}(\mathbb{R}^n) \,. \label{deRhamDifferentialUniversal}\end{equation} That this satisfies the compatibility with precomposition of plots \begin{displaymath} \itexarray{ \mathbb{R}^{n_1} && \Omega^k(\mathbb{R}^{n_1}) &\overset{d}{\longrightarrow}& \Omega^{k+1}(\mathbb{R}^{n_1}) \\ {}^{\mathllap{f}}\downarrow && \uparrow^{\mathrlap{f^\ast}} && \uparrow^{\mathrlap{f^\ast}} \\ \mathbb{R}^{n_2} && \Omega^k(\mathbb{R}^{n_2}) &\underset{d}{\longrightarrow}& \Omega^k( \mathbb{R}^{n_2} ) } \end{displaymath} is just the compatibility of [[pullback of differential forms]] with the [[de Rham differential]] of from prop. \ref{PullbackOfDifferentialForms}. \end{example} The upshot is that we now have a good definition of [[differential forms]] on any [[diffeological space]] and more generally on any [[smooth set]]: \begin{defn} \label{DifferentialFormsOnDiffeologicalSpaces}\hypertarget{DifferentialFormsOnDiffeologicalSpaces}{} \textbf{([[differential forms]] on [[smooth sets]])} Let $X$ be a [[diffeological space]] (def. \ref{DiffeologicalSpace}) or more generally a [[smooth set]] (def. \ref{SmoothSet}) then a [[differential form|differential k-form]] $\omega$ on $X$ is equivalently a [[morphism]] of [[smooth sets]] \begin{displaymath} X \longrightarrow \mathbf{\Omega}^k \end{displaymath} from $X$ to the universal [[smooth set|smooth]] [[moduli space]] of differential froms from example \ref{UniversalSmoothModuliSpaceOfDifferentialForms}. Concretely, by unwinding the definitions of $\mathbf{\Omega}^k$ and of [[morphisms]] of smooth sets, this means that such a differential form is: \begin{itemize}% \item for each $n \in \mathbb{N}$ and each plot $\mathbb{R}^n \overset{\Phi}{\to} X$ an ordinary [[differential form]] \begin{displaymath} \Phi^\ast(\omega) \in \Omega^\bullet(\mathbb{R}^n) \end{displaymath} \end{itemize} such that \begin{itemize}% \item for each [[smooth function]] $f \;\colon\; \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$ between [[Cartesian spaces]] the ordinary [[pullback of differential forms]] along $f$ is compatible with these choices, in that for every plot $\mathbb{R}^{n_2} \overset{\Phi}{\to} X$ we have \begin{displaymath} f^\ast\left(\Phi^\ast(\omega)\right) = ( f^\ast \Phi )^\ast(\omega) \end{displaymath} i.e. \begin{displaymath} \itexarray{ \mathbb{R}^{n_1} && \overset{f}{\longrightarrow} && \mathbb{R}^{n_2} \\ & {}_{\mathllap{f^\ast \Phi}}\searrow && \swarrow_{\mathrlap{\Phi}} \\ && X } \phantom{AAAA} \itexarray{ \Omega^\bullet( \mathbb{R}^{n_1} ) && \overset{f^\ast}{\longleftarrow} && \Omega^\bullet(\mathbb{R}^{n_2}) \\ & {}_{\mathllap{(f^\ast \Phi)^\ast}}\nwarrow && \nearrow_{\mathrlap{\Phi^\ast}} \\ && \Omega^\bullet(X) } \,. \end{displaymath} \end{itemize} We write $\Omega^\bullet(X)$ for the set of differential forms on the smooth set $X$ defined this way. Moreover, given a [[differential form|differential k-form]] \begin{displaymath} X \overset{\omega}{\longrightarrow} \mathbf{\Omega}^k \end{displaymath} on a [[smooth set]] $X$ this way, then its [[de Rham differential]] $d \omega \in \Omega^{k+1}(X)$ is given by the [[composition|composite]] of [[morphisms]] of [[smooth sets]] with the universal de Rham differential from \eqref{deRhamDifferentialUniversal}: \begin{equation} d \omega \;\colon\; X \overset{\omega}{\longrightarrow} \mathbf{\Omega}^k \overset{d}{\longrightarrow} \mathbf{\Omega}^{k+1} \,. \label{FormsOnSmoothSetDeRhamDifferential}\end{equation} Explicitly this means simply that for $\Phi \colon U \to X$ a plot, then \begin{displaymath} \Phi^\ast (d\omega) \;=\; d\left( \Phi^\ast \omega\right) \;\in\; \Omega^{k+1}(U) \,. \end{displaymath} \end{defn} The usual operations on ordinary [[differential forms]] directly generalize plot-wise to differential forms on [[diffeological spaces]] and more generally on [[smooth sets]]: \begin{defn} \label{ExteriorCalculusOnDiffeologicalSpaces}\hypertarget{ExteriorCalculusOnDiffeologicalSpaces}{} \textbf{([[exterior differential]] and [[exterior product]] on [[smooth sets]])} Let $X$ be a [[diffeological space]] (def. \ref{DiffeologicalSpace}) or more generally a [[smooth set]] (def. \ref{SmoothSet}). Then \begin{enumerate}% \item For $\omega \in \Omega^n(X)$ a [[differential form]] on $X$ (def. \ref{DifferentialFormsOnDiffeologicalSpaces}) its [[exterior differential]] \begin{displaymath} d \omega \in \Omega^{n+1}(X) \end{displaymath} is defined on any plot $\mathbb{R}^n \overset{\Phi}{\to} X$ as the ordinary [[exterior differential]] of the pullback of $\omega$ along that plot: \begin{displaymath} \Phi^\ast(d \omega) \coloneqq d \Phi^\ast(\omega) \,. \end{displaymath} \item For $\omega_1 \in \Omega^{n_1}$ and $\omega_2 \in \Omega^{n_2}(X)$ two differential forms on $X$ (def. \ref{DifferentialFormsOnDiffeologicalSpaces}) then their [[exterior product]] \begin{displaymath} \omega_1 \wedge \omega_2 \;\in\; \Omega^{n_1 + n_2}(X) \end{displaymath} is the differential form defined on any plot $\mathbb{R}^n \overset{\Phi}{\to} X$ as the ordinary exterior product of the pullback of th differential forms $\omega_1$ and $\omega_2$ to this plot: \begin{displaymath} \Phi^\ast(\omega_1 \wedge \omega_2) \;\coloneqq\; \Phi^\ast(\omega_1) \wedge \Phi^\ast(\omega_2) \,. \end{displaymath} \end{enumerate} \end{defn} $\,$ \textbf{Infinitesimal geometry} It is crucial in [[field theory]] that we consider [[field histories]] not only over all of [[spacetime]], but also restricted to [[submanifolds]] of spacetime. Or rather, what is actually of interest are the restrictions of the field histories to the \emph{[[infinitesimal neighbourhoods]]} (example \ref{InfinitesimalNeighbourhood} below) of these submanifolds. This appears notably in the construction of \emph{[[phase spaces]]} \hyperlink{PhaseSpace}{below}. Moreover, [[fermion fields]] such as the [[Dirac field]] (example \ref{DiracFieldBundle} below) take values in \emph{[[graded object|graded]]} [[infinitesimal]] spaces, called \emph{[[super spaces]]} (discussed \hyperlink{Supergeometry}{below}). Therefore ``infinitesimal geometry'', sometimes called \emph{[[formal geometry]]} (as in ``[[formal scheme]]'') or \emph{[[synthetic differential geometry]]} or \emph{[[synthetic differential supergeometry]]}, is a central aspect of [[field theory]]. In order to mathematically grasp what \emph{[[infinitesimal neighbourhoods]]} are, we appeal to the first magic algebraic property of differential geometry from prop. \ref{AlgebraicFactsOfDifferentialGeometry}, which says that we may recognize [[smooth manifolds]] $X$ [[formal dual|dually]] in terms of their [[commutative algebras]] $C^\infty(X)$ of [[smooth functions]] on them \begin{displaymath} C^\infty(-) \;\colon\; SmoothManifolds \overset{\phantom{AAA}}{\hookrightarrow} (\mathbb{R} Algebras)^{op} \,. \end{displaymath} But since there are of course more [[associative algebras|algebras]] $A \in \mathbb{R}Algebras$ than arise this way from smooth manifolds, we may turn this around and try to regard any algebra $A$ as \emph{defining} a would-be [[space]], which would have $A$ as its [[algebra of functions]]. For example an \emph{[[infinitesimally thickened point]]} should be a space which is ``so small'' that every smooth function $f$ on it which vanishes at the origin takes values so tiny that some finite power of them is not just even more tiny, but actually vanishes: \begin{defn} \label{InfinitesimallyThickendSmoothManifold}\hypertarget{InfinitesimallyThickendSmoothManifold}{} \textbf{([[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]])} An \emph{[[infinitesimally thickened point]]} \begin{displaymath} \mathbb{D} \coloneqq Spec(A) \end{displaymath} is represented by a [[commutative algebra]] $A \in \mathbb{R}Alg$ which as a [[real vector space]] is a [[direct sum]] \begin{displaymath} A \simeq_{\mathbb{R}} \langle 1 \rangle \oplus V \end{displaymath} of the 1-dimensional space $\langle 1 \rangle = \mathbb{R}$ of multiples of 1 with a [[finite dimensional vector space]] $V$ that is a [[nilpotent ideal]] in that for each element $a \in V$ there exists a [[natural number]] $n \in \mathbb{N}$ such that \begin{displaymath} a^{n+1} = 0 \,. \end{displaymath} More generally, an [[infinitesimally thickened manifold|infinitesimally thickened Cartesian space]] \begin{displaymath} \mathbb{R}^n \times \mathbb{D} \;\coloneqq\; \mathbb{R}^n \times Spec(A) \end{displaymath} is represented by a [[commutative algebra]] \begin{displaymath} C^\infty(\mathbb{R}^n) \otimes A \;\in\; \mathbb{R} Alg \end{displaymath} which is the [[tensor product of algebras]] of the algebra of smooth functions $C^\infty(\mathbb{R}^n)$ on an actual [[Cartesian space]] of some [[dimension]] $n$ (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}), with an algebra of functions $A \simeq_{\mathbb{R}} \langle 1\rangle \oplus V$ of an infinitesimally thickened point, as above. We say that a \emph{smooth function between two [[infinitesimally thickened manifolds|infinitesimally thickened Cartesian spaces]]} \begin{displaymath} \mathbb{R}^{n_1} \times Spec(A_1) \overset{f}{\longrightarrow} \mathbb{R}^{n_2} \times Spec(A_2) \end{displaymath} is by definition [[formal dual|dually]] an $\mathbb{R}$-algebra [[homomorphism]] of the form \begin{displaymath} C^\infty(\mathbb{R}^{n_1}) \otimes A_1 \overset{f^\ast}{\longleftarrow} C^\infty(\mathbb{R}^{n_2}) \otimes A_2 \,. \end{displaymath} \end{defn} \begin{example} \label{InfinitesimalNeighbourhoodsInTheRealLine}\hypertarget{InfinitesimalNeighbourhoodsInTheRealLine}{} \textbf{([[infinitesimal neighbourhoods]] in the [[real line]] )} Consider the [[quotient ring|quotient algebra]] of the [[formal power series algebra]] $\mathbb{R}[ [\epsilon] ]$ in a single parameter $\epsilon$ by the ideal generated by $\epsilon^2$: \begin{displaymath} (\mathbb{R}[ [\epsilon] ])/(\epsilon^2) \;\simeq_{\mathbb{R}}\; \mathbb{R} \oplus \epsilon \mathbb{R} \,. \end{displaymath} (This is sometimes called the \emph{[[algebra of dual numbers]]}, for no good reason.) The underlying [[real vector space]] of this algebra is, as show, the [[direct sum]] of the multiples of 1 with the multiples of $\epsilon$. A general element in this algebra is of the form \begin{displaymath} a + b \epsilon \in (\mathbb{R}[\epsilon])/(\epsilon^2) \end{displaymath} where $a,b \in \mathbb{R}$ are [[real numbers]]. The product in this algebra is given by ``multiplying out'' as usual, and discarding all terms proportional to $\epsilon^2$: \begin{displaymath} \left( a_1 + b_1 \epsilon \right) \cdot \left( a_2 + b_2 \epsilon \right) \;=\; a_1 a_2 + ( a_1 b_2 + b_1 a_2 ) \epsilon \,. \end{displaymath} We may think of an element $a + b \epsilon$ as the truncation to first order of a [[Taylor series]] at the origin of a [[smooth function]] on the [[real line]] \begin{displaymath} f \;\colon\; \mathbb{R} \to \mathbb{R} \end{displaymath} where $a = f(0)$ is the value of the function at the origin, and where $b = \frac{\partial f}{\partial x}(0)$ is its first [[derivative]] at the origin. Therefore this algebra behaves like the algebra of smooth function on an [[infinitesimal neighbourhood]] $\mathbb{D}^1$ of $0 \in \mathbb{R}$ which is so tiny that its [[generalized element|elements]] $\epsilon \in \mathbb{D}^1 \hookrightarrow \mathbb{R}$ become, upon squaring them, not just tinier, but actually zero: \begin{displaymath} \epsilon^2 = 0 \,. \end{displaymath} This intuitive picture is now made precise by the concept of [[infinitesimally thickened points]] def. \ref{InfinitesimallyThickendSmoothManifold}, if we simply set \begin{displaymath} \mathbb{D}^1 \;\coloneqq\; Spec\left( \mathbb{R}[ [\epsilon] ]/(\epsilon^2) \right) \end{displaymath} and observe that there is the [[monomorphism|inclusion]] of infinitesimally thickened Cartesian spaces \begin{displaymath} \mathbb{D}^1 \overset{\phantom{AA}i\phantom{AA} }{\hookrightarrow} \mathbb{R}^1 \end{displaymath} which is dually given by the algebra homomorphism \begin{displaymath} \itexarray{ \mathbb{R} \oplus \epsilon \mathbb{R} &\overset{i^\ast}{\longleftarrow}& C^\infty(\mathbb{R}^1) \\ f(0) + \frac{\partial f}{\partial x}(0) &\longleftarrow& \{f\} } \end{displaymath} which sends a [[smooth function]] to its value $f(0)$ at zero plus $\epsilon$ times its [[derivative]] at zero. Observe that this is indeed a [[homomorphism]] of algebras due to the [[product law]] of [[differentiation]], which says that \begin{displaymath} \begin{aligned} i^\ast(f \cdot g) & = (f \cdot g)(0) + \frac{\partial f \cdot g}{\partial x}(0) \epsilon \\ & = f(0) \cdot g(0) + \left( \frac{\partial f}{\partial x}(0) \cdot g(0) + f(0) \cdot \frac{\partial g}{\partial x}(0) \right) \epsilon \\ & = \left( f(0) + \frac{\partial f}{\partial x}(0) \epsilon \right) \cdot \left( g(0) + \frac{\partial g}{\partial x}(0) \epsilon \right) \end{aligned} \end{displaymath} Hence we see that restricting a smooth function to the infinitesimal neighbourhood of a point is equivalent to restricting attention to its [[Taylor series]] to the given order at that point: \begin{displaymath} \itexarray{ \mathbb{D}^1 &\overset{i}{\hookrightarrow}& \mathbb{R}^1 \\ & {}_{\mathllap{(\epsilon \mapsto f(0) + \frac{\partial f}{\partial x}(0) \epsilon) }}\searrow & \downarrow_{\mathrlap{f}} \\ && \mathbb{R}^1 } \end{displaymath} Similarly for each $k \in \mathbb{N}$ the algebra \begin{displaymath} (\mathbb{R}[ [ \epsilon ] ])/(\epsilon^{k+1}) \end{displaymath} may be thought of as the algebra of [[Taylor series]] at the origin of $\mathbb{R}$ of [[smooth functions]] $\mathbb{R} \to \mathbb{R}$, where all terms of order higher than $k$ are discarded. The corresponding [[infinitesimally thickened point]] is often denoted \begin{displaymath} \mathbb{D}^1(k) \;\coloneqq\; Spec\left( \left(\mathbb{R}[ [\epsilon] ]\right)/(\epsilon^{k+1}) \right) \,. \end{displaymath} This is now the [[subobject]] of the [[real line]] \begin{displaymath} \mathbb{D}^1(k) \overset{\phantom{AAA}}{\hookrightarrow} \mathbb{R}^1 \end{displaymath} on those elements $\epsilon$ such that $\epsilon^{k+1} = 0$. \end{example} (\href{synthetic+differential+geometry#Kock81}{Kock 81}, \href{synthetic+differential+geometry#Kock10}{Kock 10}) The following example \ref{UniquePointOfInfinitesimalLine} shows that infinitesimal thickening is invisible for ordinary spaces when mapping \emph{out} of these. In contrast example \ref{SyntheticTangentVectorFields} further below shows that the morphisms \emph{into} an ordinary space out of an infinitesimal space are interesting: these are [[tangent vectors]] and their higher order infinitesimal analogs. \begin{example} \label{UniquePointOfInfinitesimalLine}\hypertarget{UniquePointOfInfinitesimalLine}{} \textbf{([[infinitesimal]] line $\mathbb{D}^1$ has unique [[global point]])} For $\mathbb{R}^n$ any ordinary [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) and $D^1(k) \hookrightarrow \mathbb{R}^1$ the order-$k$ [[infinitesimal neighbourhood]] of the origin in the [[real line]] from example \ref{InfinitesimalNeighbourhoodsInTheRealLine}, there is exactly only one possible morphism of [[infinitesimally thickened smooth manifolds|infinitesimally thickened Cartesian spaces]] from $\mathbb{R}^n$ to $\mathbb{D}^1(k)$: \begin{displaymath} \itexarray{ \mathbb{R}^n && \overset{\exists !}{\longrightarrow} &6 \mathbb{D}^1(k) \\ & {}_{\mathllap{\exists !}}\searrow && \nearrow_{\mathrlap{\exists !}} \\ && \mathbb{R}^0 = \ast } \,. \end{displaymath} \end{example} \begin{proof} By definition such a morphism is [[formal duality|dually]] an algebra homomorphism \begin{displaymath} C^\infty(\mathbb{R}^n) \overset{f^\ast}{\longleftarrow} \left( \mathbb{R}[ [\epsilon] ])/(\epsilon^{k+1} \right) \simeq_{\mathbb{R}} \mathbb{R} \oplus \mathcal{O}(\epsilon) \end{displaymath} from the higher order ``[[algebra of dual numbers]]'' to the [[algebra of functions|algebra of]] [[smooth functions]] (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}). Now this being an $\mathbb{R}$-algebra homomorphism, its action on the multiples $c \in \mathbb{R}$ of the identity is fixed: \begin{displaymath} f^\ast(1) = 1 \,. \end{displaymath} All the remaining elements are proportional to $\epsilon$, and hence are nilpotent. However, by the [[homomorphism]] property of an algebra homomorphism it follows that it must send nilpotent elements $\epsilon$ to nilpotent elements $f(\epsilon)$, because \begin{displaymath} \begin{aligned} \left(f^\ast(\epsilon)\right)^{k+1} & = f^\ast\left( \epsilon^{k+1}\right) \\ & = f^\ast(0) \\ & = 0 \end{aligned} \end{displaymath} But the only nilpotent element in $C^\infty(\mathbb{R}^n)$ is the zero element, and hence it follows that \begin{displaymath} f^\ast(\epsilon) = 0 \,. \end{displaymath} Thus $f^\ast$ as above is uniquely fixed. \end{proof} \begin{example} \label{SyntheticTangentVectorFields}\hypertarget{SyntheticTangentVectorFields}{} \textbf{([[synthetic differential geometry|synthetic]] [[tangent vector fields]])} Let $\mathbb{R}^n$ be a [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}), regarded as an [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] (def. \ref{InfinitesimallyThickendSmoothManifold}) and consider $\mathbb{D}^1 \coloneqq Spec( (\mathbb{R}[ [\epsilon] ])/(\epsilon^2) )$ the first order infinitesimal line from example \ref{InfinitesimalNeighbourhoodsInTheRealLine}. Then homomorphisms of [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian spaces]] of the form \begin{displaymath} \itexarray{ \mathbb{R}^n \times \mathbb{D}^1 && \overset{\tilde v}{\longrightarrow} && \mathbb{R}^n \\ & {}_{\mathllap{pr_1}}\searrow && \swarrow_{\mathrlap{id}} \\ && \mathbb{R}^n } \end{displaymath} hence smoothly $X$-parameterized collections of morphisms \begin{displaymath} \tilde v_x \;\colon\; \mathbb{D}^1 \longrightarrow \mathbb{R}^n \end{displaymath} which send the unique base point $\Re(\mathbb{D}^1) = \ast$ (example \ref{UniquePointOfInfinitesimalLine}) to $x \in \mathbb{R}^n$, are in [[natural bijection]] with [[tangent vector fields]] $v \in \Gamma_{\mathbb{R}^n}(T \mathbb{R}^n)$ (example \ref{TangentVectorFields}). \end{example} \begin{proof} By definition, the morphisms in question are [[formal duality|dually]] $\mathbb{R}$-[[associative algebra|algebra]] [[homomorphisms]] of the form \begin{displaymath} (C^\infty(\mathbb{R}^n) \oplus \epsilon C^\infty(\mathbb{R}^n)) \longleftarrow C^\infty(\mathbb{R}^n) \end{displaymath} which are the identity modulo $\epsilon$. Such a morphism has to take any function $f \in C^\infty(\mathbb{R}^n)$ to \begin{displaymath} f + (\partial f) \epsilon \end{displaymath} for some smooth function $(\partial f) \in C^\infty(\mathbb{R}^n)$. The condition that this assignment makes an algebra homomorphism is equivalent to the statement that for all $f_1,f_2 \in C^\infty(\mathbb{R}^n)$ we have \begin{displaymath} (f_1 f_2 + (\partial (f_1 f_2))\epsilon ) \;=\; (f_1 + (\partial f_1) \epsilon) \cdot (f_2 + (\partial f_2) \epsilon) \,. \end{displaymath} Multiplying this out and using that $\epsilon^2 = 0$, this is equivalent to \begin{displaymath} \partial(f_1 f_2) = (\partial f_1) f_2 + f_1 (\partial f_2) \,. \end{displaymath} This in turn means equivalently that $\partial\colon C^\infty(\mathbb{R}^n)\to C^\infty(\mathbb{R}^n)$ is a [[derivation]]. With this the statement follows with the third magic algebraic property of smooth functions (prop. \ref{AlgebraicFactsOfDifferentialGeometry}): [[derivations of smooth functions are vector fields]]. \end{proof} We need to consider infinitesimally thickened spaces more general than the thickenings of just Cartesian spaces in def. \ref{InfinitesimallyThickendSmoothManifold}. But just as [[Cartesian spaces]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) serve as the local test geometries to induce the general concept of [[diffeological spaces]] and [[smooth sets]] (def. \ref{SmoothSet}), so using infinitesimally thickened Cartesian spaces as test geometries immediately induces the corresponding generalization of smooth sets with infinitesimals: \begin{defn} \label{FormalSmoothSet}\hypertarget{FormalSmoothSet}{} \textbf{([[formal smooth set]])} A \emph{[[formal smooth set]]} $X$ is \begin{enumerate}% \item for each [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] $\mathbb{R}^n \times Spec(A)$ (def. \ref{InfinitesimallyThickendSmoothManifold}) a [[set]] \begin{displaymath} X(\mathbb{R}^n \times Spec(A)) \in Set \end{displaymath} to be called the set of \emph{[[smooth functions]]} or \emph{plots} from $\mathbb{R}^n \times Spec(A)$ to $X$; \item for each [[smooth function]] $f \;\colon\; \mathbb{R}^{n_1} \times Spec(A_1) \longrightarrow \mathbb{R}^{n_2} \times Spec(A_2)$ between [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian spaces]] a choice of function \begin{displaymath} f^\ast \;\colon\; X(\mathbb{R}^{n_2} \times Spec(A_2)) \longrightarrow X(\mathbb{R}^{n_1} \times Spec(A_1)) \end{displaymath} to be thought of as the precomposition operation \begin{displaymath} \left( \mathbb{R}^{n_2} \overset{\Phi}{\longrightarrow} X \right) \;\overset{f^\ast}{\mapsto}\; \left( \mathbb{R}^{n_1}\times Spec(A_1) \overset{f}{\to} \mathbb{R}^{n_2} \times Spec(A_2) \overset{\Phi}{\to} X \right) \end{displaymath} \end{enumerate} such that \begin{enumerate}% \item ([[functor|functoriality]]) \begin{enumerate}% \item If $id_{\mathbb{R}^n \times Spec(A)} \;\colon\; \mathbb{R}^n \times Spec(A) \to \mathbb{R}^n \times Spec(A)$ is the [[identity function]] on $\mathbb{R}^n \times Spec(A)$, then $\left(id_{\mathbb{R}^n \times Spec(A)}\right)^\ast \;\colon\; X(\mathbb{R}^n \times Spec(A)) \to X(\mathbb{R}^n \times Spec(A))$ is the [[identity function]] on the set of plots $X(\mathbb{R}^n \times Spec(A))$; \item If $\mathbb{R}^{n_1}\times Spec(A_1) \overset{f}{\to} \mathbb{R}^{n_2} \times Spec(A_2) \overset{g}{\to} \mathbb{R}^{n_3} \times Spec(A_3)$ are two [[composition|composable]] [[smooth functions]] between infinitesimally thickened Cartesian spaces, then pullback of plots along them consecutively equals the pullback along the [[composition]]: \begin{displaymath} f^\ast \circ g^\ast = (g \circ f)^\ast \end{displaymath} i.e. \begin{displaymath} \itexarray{ && X(\mathbb{R}^{n_2} \times Spec(A_2)) \\ & {}^{\mathllap{f^\ast}}\swarrow && \nwarrow^{\mathrlap{g^\ast}} \\ X(\mathbb{R}^{n_1} \times Spec(A_1)) && \underset{ (g \circ f)^\ast }{\longleftarrow} && X(\mathbb{R}^{n_3} \times Spec(A_3)) } \end{displaymath} \end{enumerate} \item ([[sheaf|gluing]]) If $\{ U_i \times Spec(A) \overset{f_i \times id_{Spec(A)}}{\to} \mathbb{R}^n \times Spec(A)\}_{i \in I}$ is such that \begin{displaymath} \{ U_i \overset{f_i }{\to} \mathbb{R}^n \}_{i \in I} \end{displaymath} in a [[differentiably good open cover]] (def. \ref{DifferentiablyGoodOpenCover}) then the function which restricts $\mathbb{R}^n \times Spec(A)$-plots of $X$ to a set of $U_i \times Spec(A)$-plots \begin{displaymath} X(\mathbb{R}^n \times Spec(A)) \overset{( (f_i)^\ast )_{i \in I} }{\hookrightarrow} \underset{i \in I}{\prod} X(U_i \times Spec(A)) \end{displaymath} is a [[bijection]] onto the set of those [[tuples]] $(\Phi_i \in X(U_i))_{i \in I}$ of plots, which are ``[[matching families]]'' in that they agree on [[intersections]]: \begin{displaymath} \phi_i\vert_{((U_i \cap U_j) \times Spec(A)} = \phi_j \vert_{(U_i \cap U_j)\times Spec(A)} \end{displaymath} i.e. \begin{displaymath} \itexarray{ && (U_i \cap U_j) \times Spec(A) \\ & \swarrow && \searrow \\ U_i\times Spec(A) && && U_j \times Spec(A) \\ & {}_{\mathrlap{\Phi_i}}\searrow && \swarrow_{\mathrlap{\Phi_j}} \\ && X } \end{displaymath} \end{enumerate} Finally, given $X_1$ and $X_2$ two [[formal smooth sets]], then a [[smooth function]] between them \begin{displaymath} f \;\colon\; X_1 \longrightarrow X_2 \end{displaymath} is \begin{itemize}% \item for each [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] $\mathbb{R}^n \times Spec(A)$ (def. \ref{InfinitesimallyThickendSmoothManifold}) a function \begin{displaymath} f_\ast(\mathbb{R}^n \times Spec(A)) \;\colon\; X_1(\mathbb{R}^n \times Spec(A)) \longrightarrow X_2(\mathbb{R}^n \times Spec(A)) \end{displaymath} \end{itemize} such that \begin{itemize}% \item for each [[smooth function]] $g \colon \mathbb{R}^{n_1} \times Spec(A_1) \to \mathbb{R}^{n_2} \times Spec(A_2)$ between infinitesimally thickened Cartesian spaces we have \begin{displaymath} g^\ast_2 \circ f_\ast(\mathbb{R}^{n_2} \times Spec(A_2)) = f_\ast(\mathbb{R}^{n_1} \times Spec(A_1)) \circ g^\ast_1 \end{displaymath} i.e. \begin{displaymath} \itexarray{ X_1(\mathbb{R}^{n_2} \times Spec(A_2)) &\overset{f_\ast(\mathbb{R}^{n_2}\times Spec(A_2) )}{\longrightarrow}& X_2(\mathbb{R}^{n_2} \times Spec(A_2)) \\ \mathllap{g_1^\ast}\downarrow && \downarrow\mathrlap{g^\ast_2} \\ X_1(\mathbb{R}^{n_1} \times Spec(A_1)) &\underset{f_\ast(\mathbb{R}^{n_1})}{\longrightarrow}& X_2(\mathbb{R}^{n_1} \times Spec(A_1)) } \end{displaymath} \end{itemize} \end{defn} (\href{Cahiers+topos#Dubuc79}{Dubuc 79}) Basing [[synthetic differential geometry|infinitesimal geometry]] on [[formal smooth sets]] is an instance of the general approach to [[geometry]] called \emph{[[functorial geometry]]} or \emph{[[topos theory]]}. For more background on this see at \emph{[[geometry of physics -- manifolds and orbifolds]]}. We have the evident generalization of example \ref{SmoothManifoldsAreDiffeologicalSpaces} to smooth geometry with [[infinitesimals]]: \begin{example} \label{YonedaLemmaForFormalSmoothSets}\hypertarget{YonedaLemmaForFormalSmoothSets}{} \textbf{([[infinitesimally thickened smooth manifolds|infinitesimally thickened Cartesian spaces]] are [[formal smooth sets]])} For $X$ an [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] (def. \ref{InfinitesimallyThickendSmoothManifold}), it becomes a [[formal smooth set]] according to def. \ref{FormalSmoothSet} by taking its plots out of some $\mathbb{R}^n \times \mathbb{D}$ to be the homomorphism of infinitesimally thickened Cartesian spaces: \begin{displaymath} X(\mathbb{R}^n \times \mathbb{D}) \;\coloneqq\; Hom_{FormalCartSp}( \mathbb{R}^n \times \mathbb{D}, X ) \,. \end{displaymath} (Stated more [[category theory|abstractly]], this is an instance of the \emph{[[Yoneda embedding]]} over a \emph{[[subcanonical site]]}.) \end{example} \begin{example} \label{FormalSmoothSetsIncludedSmoothSet}\hypertarget{FormalSmoothSetsIncludedSmoothSet}{} \textbf{([[smooth sets]] are [[formal smooth sets]])} Let $X$ be a [[smooth set]] (def. \ref{SmoothSet}). Then $X$ becomes a [[formal smooth set]] (def. \ref{FormalSmoothSet}) by declaring the set of plots $X(\mathbb{R}^n \times \mathbb{D})$ over an [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] (def. \ref{InfinitesimallyThickendSmoothManifold}) to be [[equivalence classes]] of [[pairs]] \begin{displaymath} \mathbb{R}^n \times \mathbb{D} \longrightarrow \mathbb{R}^{k} \,, \phantom{AA} \mathbb{R}^k \longrightarrow X \end{displaymath} of a [[morphism]] of infinitesimally thickened Cartesian spaces and of a plot of $X$, as shown, subject to the [[equivalence relation]] which identifies two such pairs if there exists a smooth function $f \colon \mathbb{R}^k \to \mathbb{R}^{k'}$ such that \begin{displaymath} \itexarray{ && \mathbb{R}^n \times \mathbb{D} \\ & \swarrow && \searrow \\ \mathbb{R}^k && \overset{f}{\longrightarrow} && \mathbb{R}^{k'} \\ \mathbb{R}^k && \underset{f}{\longrightarrow} && \mathbb{R}^{k'} \\ & \searrow && \swarrow \\ && X } \end{displaymath} Stated more [[category theory|abstractly]] this says that $X$ as a [[formal smooth set]] is the \emph{[[left Kan extension]]} (see \href{Kan+extension#CoendFormulaForPresheavesOfSets}{this example}) of $X$ as a [[smooth set]] along the [[functor]] that [[full subcategory|includes]] [[Cartesian spaces]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) into [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian spaces]] (def. \ref{InfinitesimallyThickendSmoothManifold}). \end{example} \begin{defn} \label{ReductionAndInfinitesimalShape}\hypertarget{ReductionAndInfinitesimalShape}{} \textbf{([[reduction modality|reduction]] and [[infinitesimal shape]])} For $\mathbb{R}^n \times \mathbb{D}$ an [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] (def. \ref{InfinitesimallyThickendSmoothManifold}) we say that the underlying ordinary [[Cartesian space]] $\mathbb{R}^n$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) is its \emph{[[reduced object|reduction]]} \begin{displaymath} \Re\left( \mathbb{R}^n \times \mathbb{D} \right) \;\coloneqq\; \mathbb{R}^n \,. \end{displaymath} There is the canonical inclusion morphism \begin{displaymath} \Re\left( \mathbb{R}^n \times \mathbb{D} \right) = \mathbb{R}^n \overset{\phantom{AAAA}}{\hookrightarrow} \mathbb{R}^n \times \mathbb{D} \end{displaymath} which [[formal dual|dually]] corresponds to the [[homomorphism]] of [[commutative algebras]] \begin{displaymath} C^\infty(\mathbb{R}^n) \longleftarrow C^\infty(\mathbb{R}^n) \otimes_{\mathbb{R}} A \end{displaymath} which is the identity on all smooth functions $f \in C^\infty(\mathbb{R}^n)$ and is zero on all elements $a \in V \subset A$ in the nilpotent ideal of $A$ (as in example \ref{UniquePointOfInfinitesimalLine}). Given any [[formal smooth set]] $X$, we say that its \emph{[[infinitesimal shape]]} or \emph{[[de Rham shape]]} (also: \emph{[[de Rham stack]]}) is the [[formal smooth set]] $\Im X$ (def. \ref{FormalSmoothSet}) defined to have as plots the [[reduction modality|reductions]] of the plots of $X$, according to the above: \begin{displaymath} (\Im X)( U ) \;\coloneqq\: X(\Re(U)) \,. \end{displaymath} There is a canonical morphism of formal smooth set \begin{displaymath} \eta_X \;\colon\; X \longrightarrow \Im X \end{displaymath} which takes a plot \begin{displaymath} U = \mathbb{R}^n \times \mathbb{D} \overset{f}{\longrightarrow} X \end{displaymath} to the [[composition]] \begin{displaymath} \mathbb{R}^n \hookrightarrow \mathbb{R}^n \times \mathbb{D} \overset{f}{\hookrightarrow} X \end{displaymath} regarded as a plot of $\Im X$. \end{defn} \begin{example} \label{MappingSpaceOutOfAnInfinitesimallyThickenedCartesianSpace}\hypertarget{MappingSpaceOutOfAnInfinitesimallyThickenedCartesianSpace}{} \textbf{([[mapping space]] out of an [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]])} Let $X$ be an [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] (def. \ref{InfinitesimallyThickendSmoothManifold}) and let $Y$ be a [[formal smooth set]] (def. \ref{FormalSmoothSet}). Then the \emph{[[mapping space]]} \begin{displaymath} [X,Y] \;\in\; FormalSmoothSet \end{displaymath} of smooth functions from $X$ to $Y$ is the [[formal smooth set]] whose $U$-plots are the morphisms of [[formal smooth sets]] from the [[Cartesian product]] of [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian spaces]] $U \times X$ to $Y$, hence the $U \times X$-plots of $Y$: \begin{displaymath} [X,Y](U) \;\coloneqq\; Y(U \times X) \,. \end{displaymath} \end{example} \begin{example} \label{TangentBundleSynthetic}\hypertarget{TangentBundleSynthetic}{} \textbf{([[synthetic differential geometry|synthetic]] [[tangent bundle]])} Let $X \coloneqq \mathbb{R}^n$ be a [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) regarded as an [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] (\ref{InfinitesimallyThickendSmoothManifold}) and thus regarded as a [[formal smooth set]] (def. \ref{FormalSmoothSet}) by example \ref{YonedaLemmaForFormalSmoothSets}. Consider the infinitesimal line \begin{displaymath} \mathbb{D}^1 \hookrightarrow \mathbb{R}^1 \end{displaymath} from example \ref{InfinitesimalNeighbourhoodsInTheRealLine}. Then the [[mapping space]] $[\mathbb{D}^1, X]$ (example \ref{MappingSpaceOutOfAnInfinitesimallyThickenedCartesianSpace}) is the total space of the [[tangent bundle]] $T X$ (example \ref{TangentVectorFields}). Moreover, under restriction along the [[reduced object|reduction]] $\ast \longrightarrow \mathbb{D}^1$, this is the full [[tangent bundle]] [[projection]], in that there is a [[natural isomorphism]] of [[formal smooth sets]] of the form \begin{displaymath} \itexarray{ T X &\simeq& [\mathbb{D}^1, X] \\ {}^{\mathllap{tb}}\downarrow && \downarrow^{\mathrlap{ [ \ast \to \mathbb{D}^1, X ] }} \\ X &\simeq& [\ast, X] } \end{displaymath} In particular this implies immediately that smooth [[sections]] (def. \ref{Sections}) of the tangent bundle \begin{displaymath} \itexarray{ && [\mathbb{D}^1, X] & \simeq T X \\ & {}^{\mathllap{v}}\nearrow & \downarrow \\ X &=& X } \end{displaymath} are equivalently morphisms of the form \begin{displaymath} \itexarray{ && X \\ & {}^{\mathllap{\tilde v}}\nearrow & \downarrow^{\mathrlap{id}} \\ X \times \mathbb{D}^1 &\underset{pr_1}{\longrightarrow}& X } \end{displaymath} which we had already identified with [[tangent vector fields]] (def. \ref{TangentVectorFields}) in example \ref{SyntheticTangentVectorFields}. \end{example} \begin{proof} This follows by an analogous argument as in example \ref{SyntheticTangentVectorFields}, using the [[Hadamard lemma]]. \end{proof} While in [[infinitesimally thickened smooth manifolds|infinitesimally thickened Cartesian spaces]] (def. \ref{InfinitesimallyThickendSmoothManifold}) only [[infinitesimals]] to any [[finite number|finite]] order may exist, in [[formal smooth sets]] (def. \ref{FormalSmoothSet}) we may find infinitesimals to any arbitrary finite order: \begin{example} \label{InfinitesimalNeighbourhood}\hypertarget{InfinitesimalNeighbourhood}{} \textbf{([[infinitesimal neighbourhood]])} Let $X$ be a [[formal smooth sets]] (def. \ref{FormalSmoothSet}) $Y \hookrightarrow X$ a sub-formal smooth set. Then the \emph{[[infinitesimal neighbourhood]]} to arbitrary infinitesimal order of $Y$ in $X$ is the [[formal smooth set]] $N_X Y$ whose plots are those plots of $X$ \begin{displaymath} \mathbb{R}^n \times Spec(A) \overset{f}{\longrightarrow} X \end{displaymath} such that their [[reduced object|reduction]] (def. \ref{ReductionAndInfinitesimalShape}) \begin{displaymath} \mathbb{R}^n \hookrightarrow \mathbb{R}^n \times Spec(A) \overset{f}{\longrightarrow} X \end{displaymath} factors through a plot of $Y$. \end{example} This allows to grasp the restriction of [[field histories]] to the [[infinitesimal neighbourhood]] of a [[submanifold]] of [[spacetime]], which will be crucial for the discussion of [[phase spaces]] \hyperlink{PhaseSpace}{below}. \begin{defn} \label{FieldHistoriesOnInfinitesimalNeighbourhoodOfSubmanifoldOfSpacetime}\hypertarget{FieldHistoriesOnInfinitesimalNeighbourhoodOfSubmanifoldOfSpacetime}{} \textbf{([[field histories]] on [[infinitesimal neighbourhood]] of [[submanifold]] of [[spacetime]])} Let $E \overset{fb}{\to} \Sigma$ be a [[field bundle]] (def. \ref{FieldsAndFieldBundles}) and let $S \hookrightarrow \Sigma$ be a [[submanifold]] of [[spacetime]]. We write $N_\Sigma(S) \hookrightarrow \Sigma$ for its [[infinitesimal neighbourhood]] in $\Sigma$ (def. \ref{InfinitesimalNeighbourhood}). Then the \emph{set of field histories restricted to $S$}, to be denoted \begin{equation} \Gamma_{S}(E) \coloneqq \Gamma_{N_\Sigma(S)}( E\vert_{N_\Sigma S} ) \in \mathbf{H} \label{SpaceOfFieldHistoriesInHigherCodimension}\end{equation} is the set of section of $E$ restricted to the [[infinitesimal neighbourhood]] $N_\Sigma(S)$ (example \ref{InfinitesimalNeighbourhood}). \end{defn} $\,$ We close the discussion of [[synthetic differential geometry|infinitesimal differential geometry]] by explaining how we may recover the concept of \emph{[[smooth manifolds]]} inside the more general [[formal smooth sets]] (def./prop. \ref{SmoothManifoldInsideDiffeologicalSpaces} below). The key point is that the presence of [[infinitesimals]] in the theory allows an intrinsic definition of [[local diffeomorphisms]]/[[formally étale morphism]] (def. \ref{FormalSmoothSetLocalDiffeomorphism} and example \ref{AbstractLocalDiffeomorphismsOfCartesianSpaces} below). It is noteworthy that the only role this concept plays in the development of [[field theory]] below is that [[smooth manifolds]] admit [[triangulations]] by smooth [[singular simplices]] (def. \ref{SingularSimplicesInCartesianSpaces}) so that the concept of [[fiber integration|fiber]] [[integration of differential forms]] is well defined over manifolds. \begin{defn} \label{FormalSmoothSetLocalDiffeomorphism}\hypertarget{FormalSmoothSetLocalDiffeomorphism}{} \textbf{([[local diffeomorphism]] of [[formal smooth sets]])} Let $X,Y$ be [[formal smooth sets]] (def. \ref{FormalSmoothSet}). Then a [[morphism]] between them is called a \emph{[[local diffeomorphism]]} or \emph{[[formally étale morphism]]}, denoted \begin{displaymath} f \;\colon\; X \overset{et}{\longrightarrow} Y \,, \end{displaymath} if $f$ if for each [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian space]] (def. \ref{InfinitesimallyThickendSmoothManifold}) $\mathbb{R}^n \times \mathbb{D}$ we have a natural identification between the $\mathbb{R}^n \times \mathbb{D}$-plots of $X$ with those $\mathbb{R}^n n\times \mathbb{D}$-plots of $Y$ whose [[reduction modality|reduction]] (def. \ref{ReductionAndInfinitesimalShape}) comes from an $\mathbb{R}^n$-plot of $X$, hence if we have a [[natural transformation|natural]] [[fiber product]] of [[sets]] of plots \begin{displaymath} X(\mathbb{R}^n \times \mathbb{D}) \;\simeq\; Y(\mathbb{R}^n \times \mathbb{D}) \underset{Y(\mathbb{R}^n)}{\times^f} X(\mathbb{R}^n) \end{displaymath} i. e. \begin{displaymath} \itexarray{ && X(\mathbb{R}^n \times \mathbb{D}) \\ & \swarrow && \searrow \\ Y(\mathbb{R}^n \times \mathbb{D}) && \text{(pb)} && X(\mathbb{R}^n) \\ & \searrow && \swarrow \\ && Y(\mathbb{R}^n ) } \end{displaymath} for all [[infinitesimally thickened smooth manifold|infinitesimally thickened Cartesian spaces]] $\mathbb{R}^n \times \mathbb{D}$. Stated more [[category theory|abstractly]], this means that the [[naturality square]] of the [[unit of a monad|unit]] of the [[infinitesimal shape]] $\Im$ (def. \ref{ReductionAndInfinitesimalShape}) is a [[pullback square]] \begin{displaymath} \itexarray{ X &\overset{\eta_X}{\longrightarrow}& \Im X \\ {}^{\mathllap{f}}\downarrow &\text{(pb)}& \downarrow^{\mathrlap{\Im f}} \\ Y &\underset{\eta_Y}{\longrightarrow}& \Im Y } \end{displaymath} \end{defn} (\href{local+diffeomorphism#KhavkineSchreiber17}{Khavkine-Schreiber 17, def. 3.1}) \begin{example} \label{AbstractLocalDiffeomorphismsOfCartesianSpaces}\hypertarget{AbstractLocalDiffeomorphismsOfCartesianSpaces}{} \textbf{([[local diffeomorphism]] between [[Cartesian spaces]] from the general definition)} For $X,Y \in CartSp$ two ordinary [[Cartesian spaces]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}), regarded as [[formal smooth sets]] by example \ref{YonedaLemmaForFormalSmoothSets} then a [[morphism]] $f \colon X \to Y$ between them is a [[local diffeomorphism]] in the general sense of def. \ref{FormalSmoothSetLocalDiffeomorphism} precisely if it is so in the ordinary sense of def. \ref{LocalDiffeomorphismBetweenCartesianSpaces}. \end{example} (\href{geometry+of+physics+--+manifolds+and+orbifolds#KhavkineSchreiber17}{Khavkine-Schreiber 17, prop. 3.2}) \begin{defn} \label{SmoothManifoldInsideDiffeologicalSpaces}\hypertarget{SmoothManifoldInsideDiffeologicalSpaces}{} \textbf{([[smooth manifolds]])} A \emph{[[smooth manifold]]} $X$ of [[dimension]] $n \in \mathbb{N}$ is \begin{itemize}% \item a [[diffeological space]] (def. \ref{DiffeologicalSpace}) \end{itemize} such that \begin{enumerate}% \item there exists an [[indexed set]] $\{ \mathbb{R}^n \overset{\phi_i}{\to} X\}_{i \in I}$ of morphisms of [[formal smooth sets]] (def. \ref{FormalSmoothSet}) from [[Cartesian spaces]] $\mathbb{R}^n$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) (regarded as [[formal smooth sets]] via example \ref{SmoothManifoldsAreDiffeologicalSpaces}, example \ref{SmoothSetsDiffeologicalSpaces} and example \ref{FormalSmoothSetsIncludedSmoothSet}) into $X$, (regarded as a [[formal smooth set]] via example \ref{SmoothSetsDiffeologicalSpaces} and example \ref{FormalSmoothSetsIncludedSmoothSet}) such that \begin{enumerate}% \item every point $x \in X_s$ is in the [[image]] of at least one of the $\phi_i$; \item every $\phi_i$ is a [[local diffeomorphism]] according to def. \ref{FormalSmoothSetLocalDiffeomorphism}; \end{enumerate} \item the [[final topology]] induced by the set of plots of $X$ makes $X_s$ a [[paracompact Hausdorff space]]. \end{enumerate} \end{defn} (\href{geometry+of+physics+--+manifolds+and+orbifolds#KhavkineSchreiber17}{Khavkine-Schreiber 17, example 3.4}) For more on [[smooth manifolds]] from the perspective of [[formal smooth sets]] see at \emph{[[geometry of physics -- manifolds and orbifolds]]}. $\,$ \textbf{[[fermion fields]] and [[supergeometry]]} Field theories of interest crucially involve [[fermionic fields]] (def. \ref{FermionicBosonicFields} below), such as the [[Dirac field]] (example \ref{DiracFieldBundle} below), which are subject to the ``[[Pauli exclusion principle]]'', a key reason for the [[stability of matter]]. Mathematically this principle means that these [[field (physics)|fields]] have [[field bundles]] whose [[field fiber]] is not an ordinary [[manifold]], but an odd-graded \emph{[[supermanifold]]} (more on this in remark \ref{LagrangianDensityOfDiracFieldSupergeometricNature} and remark \ref{SupergeometricNatureOfDiracEquation} below). This ``[[supergeometry]]'' is an immediate generalization of the [[synthetic differential geometry|infinitesimal geometry]] \hyperlink{InfinitesimalGeometry}{above}, where now the [[infinitesimal]] elements in the [[algebra of functions]] may be equipped with a [[graded object|grading]]: one speaks of \emph{[[superalgebra]]}. The ``super''-terminology for something as down-to-earth as the mathematical principle behind the [[stability of matter]] may seem unfortunate. For better or worse, this terminology has become standard since the middle of the 20th century. But the concept that today is called \emph{[[supercommutative superalgebra]]} was in fact first considered by [[Ausdehnungslehre|Grassmann 1844]] who got it right (``[[Ausdehnungslehre]]'') but apparently was too far ahead of his time and remained unappreciated. Beware that considering [[supergeometry]] does \emph{not} necessarily involve considering ``[[supersymmetry]]''. Supergeometry is the geometry of [[fermion fields]] (def. \ref{FermionicBosonicFields} below), and that all [[matter]] fields in the [[observable universe]] are fermionic has been [[experiment|experimentally]] established since the [[Stern-Gerlach experiment]] in 1922. Supersymmetry, on the other hand, is a hypothetical extension of [[spacetime]]-[[symmetry]] within the context of [[supergeometry]]. Here we do not discuss supersymmetry; for details see instead at \emph{[[geometry of physics -- supersymmetry]]}. \begin{defn} \label{SupercommutativeSuperalgebra}\hypertarget{SupercommutativeSuperalgebra}{} \textbf{([[supercommutative superalgebra]])} A \emph{[[real number|real]] $\mathbb{Z}/2$-[[graded algebra]]} or \emph{[[superalgebra]]} is an [[associative algebra]] $A$ over the [[real numbers]] together with a [[direct sum]] decomposition of its underlying [[real vector space]] \begin{displaymath} A \simeq_{\mathbb{R}} A_{even} \oplus A_{odd} \,, \end{displaymath} such that the product in the algebra respects the multiplication in the [[cyclic group|cyclic]] [[group of order 2]] $\mathbb{Z}/2 = \{even, odd\}$: \begin{displaymath} \left. \itexarray{ A_{even} \cdot A_{even} \\ A_{odd} \cdot A_{odd} } \right\} \subset A_{even} \phantom{AAAA} \left. \itexarray{ A_{odd} \cdot A_{even} \\ A_{even} \cdot A_{odd} } \right\} \subset A_{odd} \,. \end{displaymath} This is called a \emph{[[supercommutative superalgebra]]} if for all elements $a_1, a_2 \in A$ which are of homogeneous degree ${\vert a_i \vert} \in \mathbb{Z}/2 = \{even, odd\}$ in that \begin{displaymath} a_i \in A_{{\vert a_i\vert}} \subset A \end{displaymath} we have \begin{displaymath} a_1 \cdot a_2 = (-1)^{{\vert a_1 \vert \vert a_2 \vert}} a_2 \cdot a_1 \,. \end{displaymath} A \emph{[[homomorphism]] of [[superalgebras]]} \begin{displaymath} f \;\colon\; A \longrightarrow A' \end{displaymath} is a [[homomorphism]] of [[associative algebras]] over the [[real numbers]] such that the $\mathbb{Z}/2$-[[graded object|grading]] is respected in that \begin{displaymath} f(A_{even}) \subset A'_{even} \phantom{AAAAA} f(A_{odd}) \subset A'_{odd} \,. \end{displaymath} \end{defn} For more details on superalgebra see at \emph{[[geometry of physics -- superalgebra]]}. \begin{example} \label{GrassmannAlgebra}\hypertarget{GrassmannAlgebra}{} \textbf{(basic examples of [[supercommutative superalgebras]])} Basic examples of [[supercommutative superalgebras]] (def. \ref{SupercommutativeSuperalgebra}) include the following: \begin{enumerate}% \item Every [[commutative algebra]] $A$ becomes a [[supercommutative superalgebra]] by declaring it to be all in even degree: $A = A_{even}$. \item For $V$ a [[finite dimensional vector space|finite dimensional]] [[real vector space]], then the [[Grassmann algebra]] $A \coloneqq \wedge^\bullet_{\mathbb{R}} V^\ast$ is a supercommutative superalgebra with $A_{even} \coloneqq \wedge^{even} V^\ast$ and $A_{odd} \coloneqq \wedge^{odd} V^\ast$. More explicitly, if $V = \mathbb{R}^s$ is a [[Cartesian space]] with canonical dual [[coordinates]] $(\theta^i)_{i = 1}^s$ then the [[Grassmann algebra]] $\wedge^\bullet (\mathbb{R}^s)^\ast$ is the real algebra which is [[generators and relations|generated]] from the $\theta^i$ regarded in odd degree and hence subject to the relation \begin{displaymath} \theta^i \cdot \theta^j = - \theta^j \cdot \theta^i \,. \end{displaymath} In particular this implies that all the $\theta^i$ are [[infinitesimal]] (def. \ref{InfinitesimallyThickendSmoothManifold}): \begin{displaymath} \theta^i \cdot \theta^i = 0 \,. \end{displaymath} \item For $A_1$ and $A_2$ two [[supercommutative superalgebras]], there is their \emph{[[tensor product of algebras|tensor product]]} supercommutative superalgebra $A_1 \otimes_{\mathbb{R}} A_2$. For example for $X$ a [[smooth manifold]] with ordinary algebra of smooth functions $C^\infty(X)$ regarded as a supercommutative superalgebra by the first example above, the tensor product with a [[Grassmann algebra]] (second example above) is the supercommutative superalgebta \begin{displaymath} C^\infty(X) \otimes_{\mathbb{R}} \wedge^\bullet((\mathbb{R}^s)\ast) \end{displaymath} whose elements may uniquely be expanded in the form \begin{displaymath} f + f_i \theta^i + f_{i j} \theta^i \theta^j + f_{i j k} \theta^i \theta^j \theta^k + \cdots + f_{i_1 \cdots i_s} \theta^{i_1} \cdots \theta^{i_s} \,, \end{displaymath} where the $f_{i_1 \cdots i_k} \in C^\infty(X)$ are smooth functions on $X$ which are skew-symmetric in their indices. \end{enumerate} \end{example} The following is the direct super-algebraic analog of the definition of [[infinitesimally thickened smooth manifolds|infinitesimally thickened Cartesian spaces]] (def. \ref{InfinitesimallyThickendSmoothManifold}): \begin{defn} \label{SuperCartesianSpace}\hypertarget{SuperCartesianSpace}{} \textbf{([[super Cartesian space]])} A \emph{[[superpoint]]} $Spec(A)$ is represented by a [[super-commutative superalgebra]] $A$ (def. \ref{SupercommutativeSuperalgebra}) which as a $\mathbb{Z}/2$-[[graded vector space]] ([[super vector space]]) is a [[direct sum]] \begin{displaymath} A \simeq_{\mathbb{R}} \langle 1 \rangle \oplus V \end{displaymath} of the 1-dimensional even vector space $\langle 1 \rangle = \mathbb{R}$ of multiples of 1, with a [[finite dimensional vector space|finite dimensional]] [[super vector space]] $V$ that is a [[nilpotent ideal]] in $A$ in that for each element $a \in V$ there exists a [[natural number]] $n \in \mathbb{N}$ such that \begin{displaymath} a^{n+1} = 0 \,. \end{displaymath} More generally, a [[super Cartesian space]] $\mathbb{R}^n \times Spec(A)$ is represented by a [[super-commutative algebra]] $C^\infty(\mathbb{R}^n) \otimes A \in \mathbb{R} Alg$ which is the [[tensor product of algebras]] of the algebra of smooth functions $C^\infty(\mathbb{R}^n)$ on an actual [[Cartesian space]] of some [[dimension]] $n$, with an algebra of functions $A \simeq_{\mathbb{R}} \langle 1\rangle \oplus V$ of a [[superpoint]] (example \ref{GrassmannAlgebra}). Specifically, for $s \in \mathbb{N}$, there is the superpoint \begin{equation} \mathbb{R}^{0 \vert s} \;\coloneqq\; Spec\left( \wedge^\bullet (\mathbb{R}^s)^\ast \right) \label{StandardSuperpoints}\end{equation} whose [[algebra of functions]] is by definition the [[Grassmann algebra]] on $s$ generators $(\theta^i)_{i = 1}^s$ in odd degree (example \ref{GrassmannAlgebra}). We write \begin{displaymath} \begin{aligned} \mathbb{R}^{b\vert s} & \coloneqq \mathbb{R}^b \times \mathbb{R}^{0 \vert s} \\ & = \mathbb{R}^b \times Spec( \wedge^\bullet(\mathbb{R}^s)^\ast ) \\ & = Spec\left( C^\infty(\mathbb{R}^b) \otimes_{\mathbb{R}} \wedge^\bullet (\mathbb{R}^s)^\ast \right) \end{aligned} \end{displaymath} for the corresponding super Cartesian spaces whose algebra of functions is as in example \ref{GrassmannAlgebra}. We say that a \emph{smooth function} between two [[super Cartesian spaces]] \begin{displaymath} \mathbb{R}^{n_1} \times Spec(A_1) \overset{f}{\longrightarrow} \mathbb{R}^{n_2} \times Spec(A_2) \end{displaymath} is by definition [[formal dual|dually]] a [[homomorphism]] of [[supercommutative superalgebras]] (def. \ref{SupercommutativeSuperalgebra}) of the form \begin{displaymath} C^\infty(\mathbb{R}^{n_1}) \otimes A_1 \overset{f^\ast}{\longleftarrow} C^\infty(\mathbb{R}^{n_2}) \otimes A_2 \,. \end{displaymath} \end{defn} \begin{example} \label{SuperpointInducedByFiniteDimensionalVectorSpace}\hypertarget{SuperpointInducedByFiniteDimensionalVectorSpace}{} \textbf{([[superpoint]] induced by a [[finite dimensional vector space]])} Let $V$ be a [[finite dimensional vector space|finite dimensional]] [[real vector space]]. With $V^\ast$ denoting its [[dual vector space]] write $\wedge^\bullet V^\ast$ for the [[Grassmann algebra]] that it generates. This being a [[supercommutative algebra]], it defines a [[superpoint]] (def. \ref{SuperCartesianSpace}). We denote this superpoint by \begin{displaymath} V_{odd} \simeq \mathbb{R}^{0 \vert dim(V)} \,. \end{displaymath} \end{example} All the [[differential geometry]] over [[Cartesian space]] that we discussed \hyperlink{Geometry}{above} generalizes immediately to [[super Cartesian spaces]] (def. \ref{SuperCartesianSpace}) if we stricly adhere to the [[signs in supergeometry|super sign rule]] which says that whenever two odd-graded elements swap places, a minus sign is picked up. In particular we have the following generalization of the [[de Rham complex]] on [[Cartesian spaces]] discussed \hyperlink{DifferentialFormsAndCartanCalculus}{above}. \begin{defn} \label{DifferentialFormOnSuperCartesianSpaces}\hypertarget{DifferentialFormOnSuperCartesianSpaces}{} \textbf{([[super differential forms]] on [[super Cartesian spaces]])} For $\mathbb{R}^{b\vert s}$ a [[super Cartesian space]] (def. \ref{SuperCartesianSpace}), hence the [[formal dual]] of the [[supercommutative superalgebra]] of the form \begin{displaymath} C^\infty(\mathbb{R}^{b\vert s}) \;=\; C^\infty(\mathbb{R}^b) \otimes_{\mathbb{R}} \wedge^\bullet \mathbb{R}^s \end{displaymath} with canonical even-graded [[coordinate functions]] $(x^i)_{i = 1^b}$ and odd-graded coordinate functions $(\theta^j)_{j = 1}^s$. Then the \emph{[[de Rham complex]] of [[super differential forms]] on $\mathbb{R}^{b\vert s}$} is, in super-generalization of def. \ref{DifferentialnForms}, the $\mathbb{Z} \times (\mathbb{Z}/2)$-[[graded commutative algebra]] \begin{displaymath} \Omega^\bullet(\mathbb{R}^{b|s}) \;\coloneqq\; C^\infty(\mathbb{R}^{b|s}) \otimes_{\mathbb{R}} \wedge^\bullet \langle d x^1, \cdots, d x^b, \; d \theta^1, \cdots, d\theta^s \rangle \end{displaymath} which is generated over $C^\infty(\mathbb{R}^{b\vert s})$ from new generators \begin{displaymath} \underset{ \text{deg} = (1,even) }{\underbrace{ d x^i }} \phantom{AAAAA} \underset{ \text{deg} = (1,odd) }{ \underbrace{ d \theta^j } } \end{displaymath} whose [[differential]] is defined in degree-0 by \begin{displaymath} d f \;\coloneqq\; \frac{\partial f}{\partial x^i} d x^i + \frac{\partial f}{\partial \theta^j} d \theta^j \end{displaymath} and extended from there as a bigraded [[derivation]] of bi-degree $(1,even)$, in super-generalization of def. \ref{deRhamDifferential}. Accordingly, the operation of contraction with [[tangent vector fields]] (def. \ref{ContractionOfFormsWithVectorFields}) has bi-degree $(-1,\sigma)$ if the tangent vector has super-degree $\sigma$: \begin{tabular}{l|l} generator&bi-degree\\ \hline $\phantom{AA} x^a$&(0,even)\\ $\phantom{AA} \theta^\alpha$&(0,odd)\\ $\phantom{AA} dx^a$&(1,even)\\ $\phantom{AA} d\theta^\alpha$&(1,odd)\\ \end{tabular} \begin{tabular}{l|l} derivation&bi-degree\\ \hline $\phantom{AA} d$&(1,even)\\ $\phantom{AA}\iota_{\partial x^a}$&(-1, even)\\ $\phantom{AA}\iota_{\partial \theta^\alpha}$&(-1,odd)\\ \end{tabular} This means that if $\alpha \in \Omega^\bullet(\mathbb{R}^{b\vert s})$ is in bidegree $(n_\alpha, \sigma_\alpha)$, and $\beta \in \Omega^\bullet(\mathbb{R}^{b \vert \sigma})$ is in bidegree $(n_\beta, \sigma_\beta)$, then \begin{displaymath} \alpha \wedge \beta \; = \; (- 1)^{n_\alpha n_\beta + \sigma_\alpha \sigma_\beta} \; \beta \wedge \alpha \,. \end{displaymath} Hence there are \emph{two} contributions to the sign picked up when exchanging two super-differential forms in the wedge product: \begin{enumerate}% \item there is a ``cohomological sign'' which for commuting an $n_1$-forms past an $n_2$-form is $(-1)^{n_1 n_2}$; \item in addition there is a ``super-grading'' sign which for commuting a $\sigma_1$-graded coordinate function past a $\sigma_2$-graded coordinate function (possibly under the de Rham differential) is $(-1)^{\sigma_1 \sigma_2}$. \end{enumerate} For example: \begin{displaymath} x^{a_1} (dx^{a_2}) \;=\; + (dx^{a_2}) x^{a_1} \end{displaymath} \begin{displaymath} \theta^\alpha (dx^a) \;=\; + (dx^a) \theta^\alpha \end{displaymath} \begin{displaymath} \theta^{\alpha_1} (d\theta^{\alpha_2}) \;=\; - (d\theta^{\alpha_2}) \theta^{\alpha_1} \end{displaymath} \begin{displaymath} dx^{a_1} \wedge d x^{a_2} \;=\; - d x^{a_2} \wedge d x^{a_1} \end{displaymath} \begin{displaymath} dx^a \wedge d \theta^{\alpha} \;=\; - d\theta^{\alpha} \wedge d x^a \end{displaymath} \begin{displaymath} d\theta^{\alpha_1} \wedge d \theta^{\alpha_2} \;=\; + d\theta^{\alpha_2} \wedge d \theta^{\alpha_1} \end{displaymath} \end{defn} (e.g. \href{signs+in+supergeometry#CastellaniDAuriaFre91}{Castellani-D'Auria-Fr\'e{} 91 (II.2.106) and (II.2.109)}, \href{signs+in+supergeometry#DeligneFreed99}{Deligne-Freed 99, section 6}) Beware that there is also \emph{another} sign rule for [[super differential forms]] used in the literature. See at \emph{[[signs in supergeometry]]} for further discussion. $\,$ It is clear now by direct analogy with the definition of [[formal smooth sets]] (def. \ref{FormalSmoothSet}) what the corresponding [[supergeometry|supergeometric]] generalization is. For definiteness we spell it out yet once more: \begin{defn} \label{SuperFormalSmoothSet}\hypertarget{SuperFormalSmoothSet}{} \textbf{([[super formal smooth set|super smooth set]])} A \emph{[[super formal smooth set|super smooth set]]} $X$ is \begin{enumerate}% \item for each [[super Cartesian space]] $\mathbb{R}^n \times Spec(A)$ (def. \ref{SuperCartesianSpace}) a [[set]] \begin{displaymath} X(\mathbb{R}^n \times Spec(A)) \in Set \end{displaymath} to be called the set of \emph{[[smooth functions]]} or \emph{plots} from $\mathbb{R}^n \times Spec(A)$ to $X$; \item for each [[smooth function]] $f \;\colon\; \mathbb{R}^{n_1} \times Spec(A_1) \longrightarrow \mathbb{R}^{n_2} \times Spec(A_2)$ between [[super Cartesian spaces]] a choice of function \begin{displaymath} f^\ast \;\colon\; X(\mathbb{R}^{n_2} \times Spec(A_2)) \longrightarrow X(\mathbb{R}^{n_1} \times Spec(A_1)) \end{displaymath} to be thought of as the precomposition operation \begin{displaymath} \left( \mathbb{R}^{n_2} \overset{\Phi}{\longrightarrow} X \right) \;\overset{f^\ast}{\mapsto}\; \left( \mathbb{R}^{n_1}\times Spec(A_1) \overset{f}{\to} \mathbb{R}^{n_2} \times Spec(A_2) \overset{\Phi}{\to} X \right) \end{displaymath} \end{enumerate} such that \begin{enumerate}% \item ([[functor|functoriality]]) \begin{enumerate}% \item If $id_{\mathbb{R}^n \times Spec(A)} \;\colon\; \mathbb{R}^n \times Spec(A) \to \mathbb{R}^n \times Spec(A)$ is the [[identity function]] on $\mathbb{R}^n \times Spec(A)$, then $\left(id_{\mathbb{R}^n \times Spec(A)}\right)^\ast \;\colon\; X(\mathbb{R}^n \times Spec(A)) \to X(\mathbb{R}^n \times Spec(A))$ is the [[identity function]] on the set of plots $X(\mathbb{R}^n \times Spec(A))$. \item If $\mathbb{R}^{n_1}\times Spec(A_1) \overset{f}{\to} \mathbb{R}^{n_2} \times Spec(A_2) \overset{g}{\to} \mathbb{R}^{n_3} \times Spec(A_3)$ are two [[composition|composable]] [[smooth functions]] between infinitesimally thickened Cartesian spaces, then pullback of plots along them consecutively equals the pullback along the [[composition]]: \begin{displaymath} f^\ast \circ g^\ast = (g \circ f)^\ast \end{displaymath} i.e. \begin{displaymath} \itexarray{ && X(\mathbb{R}^{n_2} \times Spec(A_2)) \\ & {}^{\mathllap{f^\ast}}\swarrow && \nwarrow^{\mathrlap{g^\ast}} \\ X(\mathbb{R}^{n_1} \times Spec(A_1)) && \underset{ (g \circ f)^\ast }{\longleftarrow} && X(\mathbb{R}^{n_3} \times Spec(A_3)) } \end{displaymath} \end{enumerate} \item ([[sheaf|gluing]]) If $\{ U_i \times Spec(A) \overset{f_i \times id_{Spec(A)}}{\to} \mathbb{R}^n \times Spec(A)\}_{i \in I}$ is such that \begin{displaymath} \{ U_i \overset{f_i }{\to} \mathbb{R}^n \}_{i \in I} \end{displaymath} is a [[differentiably good open cover]] (def. \ref{DifferentiablyGoodOpenCover}) then the function which restricts $\mathbb{R}^n \times Spec(A)$-plots of $X$ to a set of $U_i \times Spec(A)$-plots \begin{displaymath} X(\mathbb{R}^n \times Spec(A)) \overset{( (f_i)^\ast )_{i \in I} }{\hookrightarrow} \underset{i \in I}{\prod} X(U_i \times Spec(A)) \end{displaymath} is a [[bijection]] onto the set of those [[tuples]] $(\Phi_i \in X(U_i))_{i \in I}$ of plots, which are ``[[matching families]]'' in that they agree on [[intersections]]: \begin{displaymath} \phi_i\vert_{((U_i \cap U_j) \times Spec(A)} = \phi_j \vert_{(U_i \cap U_j)\times Spec(A)} \end{displaymath} i.e. \begin{displaymath} \itexarray{ && (U_i \cap U_j) \times Spec(A) \\ & \swarrow && \searrow \\ U_i\times Spec(A) && && U_j \times Spec(A) \\ & {}_{\mathrlap{\Phi_i}}\searrow && \swarrow_{\mathrlap{\Phi_j}} \\ && X } \end{displaymath} \end{enumerate} Finally, given $X_1$ and $X_2$ two [[super formal smooth sets]], then a [[smooth function]] between them \begin{displaymath} f \;\colon\; X_1 \longrightarrow X_2 \end{displaymath} is \begin{itemize}% \item for each [[super Cartesian space]] $\mathbb{R}^n \times Spec(A)$ a function \begin{displaymath} f_\ast(\mathbb{R}^n \times Spec(A)) \;\colon\; X_1(\mathbb{R}^n \times Spec(A)) \longrightarrow X_2(\mathbb{R}^n \times Spec(A)) \end{displaymath} \end{itemize} such that \begin{itemize}% \item for each [[smooth function]] $g \colon \mathbb{R}^{n_1} \times Spec(A_1) \to \mathbb{R}^{n_2} \times Spec(A_2)$ between super Cartesian spaces we have \begin{displaymath} g^\ast_2 \circ f_\ast(\mathbb{R}^{n_2} \times Spec(A_2)) = f_\ast(\mathbb{R}^{n_1} \times Spec(A_1)) \circ g^\ast_1 \end{displaymath} i.e. \begin{displaymath} \itexarray{ X_1(\mathbb{R}^{n_2} \times Spec(A_2)) &\overset{f_\ast(\mathbb{R}^{n_2}\times Spec(A_2) )}{\longrightarrow}& X_2(\mathbb{R}^{n_2} \times Spec(A_2)) \\ \mathllap{g_1^\ast}\downarrow && \downarrow\mathrlap{g^\ast_2} \\ X_1(\mathbb{R}^{n_1} \times Spec(A_1)) &\underset{f_\ast(\mathbb{R}^{n_1})}{\longrightarrow}& X_2(\mathbb{R}^{n_1} \times Spec(A_1)) } \end{displaymath} \end{itemize} \end{defn} (\href{synthetic+differential+supergeometry#Yetter88}{Yetter 88}) Basing [[supergeometry]] on [[super formal smooth sets]] is an instance of the general approach to [[geometry]] called \emph{[[functorial geometry]]} or \emph{[[topos theory]]}. For more background on this see at \emph{[[geometry of physics -- supergeometry]]}. In direct generalization of example \ref{SmoothManifoldsAreDiffeologicalSpaces} we have: \begin{example} \label{SuperSmoothSetSuperCartesianSpaces}\hypertarget{SuperSmoothSetSuperCartesianSpaces}{} \textbf{([[super Cartesian spaces]] are [[super formal smooth sets|super smooth sets]])} Let $X$ be a [[super Cartesian space]] (def. \ref{SuperCartesianSpace}) Then it becomes a [[super formal smooth set|super smooth set]] (def. \ref{SuperFormalSmoothSet}) by declaring its plots $\Phi \in X(\mathbb{R}^n \times \mathbb{D})$ to the algebra homomorphisms $C^\infty(\mathbb{R}^n \times \mathbb{D}) \leftarrow C^\infty(\mathbb{R}^{b\vert s})$. Under this identification, morphisms between [[super Cartesian spaces]] are in [[natural bijection]] with their morphisms regarded as [[super formal smooth set|super smooth sets]]. Stated more [[category theory|abstractly]], this statement is an example of the \emph{[[Yoneda embedding]]} over a \emph{[[subcanonical site]]}. \end{example} Similarly, in direct generalization of prop. \ref{CartSpYpnedaLemma} we have: \begin{prop} \label{SuperCartSpYpnedaLemma}\hypertarget{SuperCartSpYpnedaLemma}{} \textbf{(plots of a [[super formal smooth set|super smooth set]] really are the [[smooth functions]] into the smooth smooth set)} Let $X$ be a [[super formal smooth set|super smooth set]] (def. \ref{SuperFormalSmoothSet}). For $\mathbb{R}^n \times \mathbb{D}$ any [[super Cartesian space]] (def. \ref{SuperCartesianSpace}) there is a [[natural transformation|natural]] [[function]] \begin{displaymath} Hom_{SmoothSet}(\mathbb{R}^n , X) \overset{\simeq}{\longrightarrow} X(\mathbb{R}^n) \end{displaymath} from the set of homomorphisms of super smooth sets from $\mathbb{R}^n \times \mathbb{D}$ (regarded as a super smooth set via example \ref{SuperSmoothSetSuperCartesianSpaces}) to $X$, to the set of plots of $X$ over $\mathbb{R}^n \times \mathbb{D}$, given by evaluating on the [[identity function|identity]] plot $id_{\mathbb{R}^n \times \mathbb{D}}$. This function is a \emph{[[bijection]]}. This says that the plots of $X$, which initially bootstrap $X$ into being as declaring the \emph{would-be} smooth functions into $X$, end up being the \emph{actual} smooth functions into $X$. \end{prop} \begin{proof} This is the statement of the \emph{[[Yoneda lemma]]} over the [[site]] of [[super Cartesian spaces]]. \end{proof} We do not need to consider here [[supermanifolds]] more general than the [[super Cartesian spaces]] (def. \ref{SuperCartesianSpace}). But for those readers familiar with the concept we include the following direct analog of the characterization of [[smooth manifolds]] according to def./prop. \ref{SmoothManifoldInsideDiffeologicalSpaces}: \begin{defn} \label{SuperSmoothManifolds}\hypertarget{SuperSmoothManifolds}{} \textbf{([[supermanifolds]])} A \emph{[[supermanifold]]} $X$ of [[dimension]] super-dimension $(b,s) \in \mathbb{N} \times \mathbb{N}$ is \begin{itemize}% \item a [[super smooth set]] (def. \ref{SuperFormalSmoothSet}) \end{itemize} such that \begin{enumerate}% \item there exists an [[indexed set]] $\{ \mathbb{R}^{b\vert s} \overset{\phi_i}{\to} X\}_{i \in I}$ of morphisms of [[super formal smooth sets|super smooth sets]] (def. \ref{SuperFormalSmoothSet}) from [[super Cartesian spaces]] $\mathbb{R}^{b\vert s}$ (def. \ref{SuperCartesianSpace}) (regarded as [[super formal smooth set|super smooth sets]] via example \ref{SuperSmoothSetSuperCartesianSpaces} into $X$, such that \begin{enumerate}% \item for every plot $\mathbb{R}^n \times \mathbb{D} \to X$ there is a [[differentiably good open cover]] (def. \ref{DifferentiablyGoodOpenCover}) restricted to which the plot factors through the $\mathbb{R}^{b\vert s}_i$; \item every $\phi_i$ is a [[local diffeomorphism]] according to def. \ref{FormalSmoothSetLocalDiffeomorphism}, now with respect not just to [[infinitesimally thickened points]], but with respect to [[superpoints]]; \end{enumerate} \item the [[bosonic modality|bosonic]] part of $X$ is a [[smooth manifold]] according to def./prop. \ref{SmoothManifoldInsideDiffeologicalSpaces}. \end{enumerate} \end{defn} Finally we have the evident generalization of the smooth moduli space $\mathbf{\Omega}^\bullet$ of [[differential forms]] from example \ref{UniversalSmoothModuliSpaceOfDifferentialForms} to [[supergeometry]] \begin{example} \label{ModuliOfSDifferentialForms}\hypertarget{ModuliOfSDifferentialForms}{} \textbf{(universal [[smooth set|smooth]] [[moduli spaces]] of [[super differential forms]])} For $n \in \mathbf{M}$ write \begin{displaymath} \mathbf{\Omega}^n \;\in\; SuperSmoothSet \end{displaymath} for the [[super smooth set]] (def. \ref{SuperSmoothSetSuperCartesianSpaces}) whose set of plots on a [[super Cartesian space]] $U \in SuperCartSp$ (def. \ref{SuperCartesianSpace}) is the set of [[super differential forms]] (def. \ref{DifferentialFormOnSuperCartesianSpaces}) of cohomolgical degree $n$ \begin{displaymath} \mathbf{\Omega}^n(U) \;\coloneqq\; \Omega^n(U) \end{displaymath} and whose maps of plots is given by [[pullback of differential forms|pullback]] of super differential forms. The [[de Rham differential]] on [[super differential forms]] applied plot-wise yields a morpism of super smooth sets \begin{equation} d \;\colon\; \mathbf{\Omega}^n \longrightarrow \mathbf{\Omega}^{n+1} \,. \label{SuperUniversalDeRhamDifferential}\end{equation} As before in def. \ref{DifferentialFormsOnDiffeologicalSpaces} we then define for any [[super smooth set]] $X \in SuperSmoothSet$ its set of differential $n$-forms to be \begin{displaymath} \Omega^n(X) \;\coloneqq\; Hom_{SuperSmoothSet}(X,\mathbf{\Omega}^n) \end{displaymath} and we define the [[de Rham differential]] on these to be given by postcomposition with \eqref{SuperUniversalDeRhamDifferential}. \end{example} $\,$ \begin{defn} \label{FermionicBosonicFields}\hypertarget{FermionicBosonicFields}{} \textbf{([[bosonic fields]] and [[fermionic fields]])} For $\Sigma$ a [[spacetime]], such as [[Minkowski spacetime]] (def. \ref{MinkowskiSpacetime}) if a [[fiber bundle]] $E \overset{fb}{\longrightarrow} \Sigma$ with total space a [[super Cartesian space]] (def. \ref{SuperCartesianSpace}) (or more generally a [[supermanifold]], def./prop. \ref{SuperSmoothManifolds}) is regarded as a super-[[field bundle]] (def. \ref{FieldsAndFieldBundles}), then \begin{itemize}% \item the even-graded [[sections]] are called the \emph{[[bosonic field|bosonic]]} [[field histories]]; \item the odd-graded [[sections]] are called the \emph{[[fermionic field|fermionic]]} [[field histories]]. \end{itemize} In components, if $E = \Sigma \times F$ is a [[trivial bundle]] with [[fiber]] a [[super Cartesian space]] (def. \ref{SuperCartesianSpace}) with even-graded [[coordinates]] $(\phi^a)$ and odd-graded [[coordinates]] $(\psi^A)$, then the $\phi^a$ are called the \emph{[[bosonic field|bosonic]]} field coordinates, and the $\psi^A$ are called the \emph{[[fermionic field|fermionic]]} field coordinates. \end{defn} What is crucial for the discussion of [[field theory]] is the following immediate [[supergeometry|supergeometric]] analog of the smooth structure on the [[space of field histories]] from example \ref{DiffeologicalSpaceOfFieldHistories}: \begin{example} \label{SupergeometricSpaceOfFieldHistories}\hypertarget{SupergeometricSpaceOfFieldHistories}{} \textbf{([[super smooth set|supergeometric]] [[space of field histories]])} Let $E \overset{fb}{\to} \Sigma$ be a super-[[field bundle]] (def. \ref{FieldsAndFieldBundles}, def. \ref{FermionicBosonicFields}). Then the \emph{[[space of sections]]}, hence the \emph{[[space of field histories]]}, is the [[super formal smooth set]] (def. \ref{SuperFormalSmoothSet}) \begin{displaymath} \Gamma_\Sigma(E) \in SuperSmoothSet \end{displaymath} whose plots $\Phi_{(-)}$ for a given [[Cartesian space]] $\mathbb{R}^n$ and [[superpoint]] $\mathbb{D}$ (def. \ref{SuperCartesianSpace}) with the [[Cartesian products]] $U \coloneqq \mathbb{R}^n \times \mathbb{D}$ and $U \times \Sigma$ regarded as [[super formal smooth set|super smooth sets]] according to example \ref{SuperSmoothSetSuperCartesianSpaces} are defined to be the [[morphisms]] of [[super formal smooth set|super smooth set]] (def. \ref{SuperFormalSmoothSet}) \begin{displaymath} \itexarray{ U \times \Sigma &\overset{\Phi_{(-)}(-)}{\longrightarrow}& E } \end{displaymath} which make the following [[commuting diagram|diagram commute]]: \begin{displaymath} \itexarray{ && E \\ & {}^{\mathllap{\Phi_{(-)}(-)}}\nearrow & \downarrow^{\mathrlap{fb}} \\ U \times \Sigma &\underset{pr_2}{\longrightarrow}& \Sigma } \,. \end{displaymath} Explicitly, if $\Sigma$ is a [[Minkowski spacetime]] (def. \ref{MinkowskiSpacetime}) and $E = \Sigma \times F$ a [[trivial bundle|trivial]] [[field bundle]] with [[field fiber]] a [[super vector space]] (example \ref{TrivialVectorBundleAsAFieldBundle}, example \ref{FermionicBosonicFields}) this means [[formal duality|dually]] that a plot $\Phi_{(-)}$ of the super smooth set of field histories is a [[homomorphism]] of [[supercommutative superalgebras]] (def. \ref{SupercommutativeSuperalgebra}) \begin{displaymath} \itexarray{ C^\infty(U \times \Sigma) &\overset{\left(\Phi_{(-)}(-)\right)^\ast}{\longleftarrow}& C^\infty(E) } \end{displaymath} which make the following [[commuting diagram|diagram commute]]: \begin{displaymath} \itexarray{ && C^\infty(E) \\ & {}^{\mathllap{\left( \Phi_{(-)}(-) \right)^\ast }}\nearrow & \uparrow^{\mathrlap{fb^\ast}} \\ C^\infty(U \times \Sigma) &\underset{pr_2^\ast}{\longleftarrow}& C^\infty(\Sigma) } \,. \end{displaymath} \end{example} We will focus on discussing the [[supergeometry|supergeometric]] [[space of field histories]] (example \ref{SupergeometricSpaceOfFieldHistories}) of the \emph{[[Dirac field]]} (def. \ref{DiracFieldBundle} below). This we consider below in example \ref{DiracFieldBundle}; but first we discuss now some relevant basics of general [[supergeometry]]. Example \ref{SupergeometricSpaceOfFieldHistories} is really a special case of a general relative [[mapping space]]-construction as in example \ref{MappingSpaceOutOfAnInfinitesimallyThickenedCartesianSpace}. This immediately generalizes also to the [[supergeometry|supergeometric]] context. \begin{defn} \label{MappingSpaceOutOfASuperCartesianSpace}\hypertarget{MappingSpaceOutOfASuperCartesianSpace}{} \textbf{([[supergeometry|super]]-[[mapping space]] out of a [[super Cartesian space]])} Let $X$ be a [[super Cartesian space]] (def. \ref{SuperCartesianSpace}) and let $Y$ be a [[super formal smooth sets|super smooth set]] (def. \ref{SuperFormalSmoothSet}). Then the \emph{[[mapping space]]} \begin{displaymath} [X,Y] \;\in\; SuperSmoothSet \end{displaymath} of super smooth functions from $X$ to $Y$ is the [[super formal smooth set]] whose $U$-plots are the morphisms of [[super formal smooth set|super smooth set]] from the [[Cartesian product]] of [[super Cartesian space]] $U \times X$ to $Y$, hence the $U \times X$-plots of $Y$: \begin{displaymath} [X,Y](U) \;\coloneqq\; Y(U \times X) \,. \end{displaymath} \end{defn} In direct generalization of the [[synthetic differential geometry|synthetic]] [[tangent bundle]] construction (example \ref{TangentBundleSynthetic}) to supergeometry we have \begin{defn} \label{TangentBundleOdd}\hypertarget{TangentBundleOdd}{} \textbf{([[odd tangent bundle]])} Let $X$ be a [[super formal smooth set|super smooth set]] (def. \ref{SuperFormalSmoothSet}) and $\mathbb{R}^{0 \vert 1}$ the [[superpoint]] \eqref{StandardSuperpoints} then the [[supergeometry|supergeometry]]-[[mapping space]] \begin{displaymath} \itexarray{ T_{odd} X & \coloneqq& [\mathbb{R}^{0\vert 1}, X] \\ {}^{\mathllap{tb_{odd}}}\downarrow && \downarrow^{\mathrlap{ [ \ast \to \mathbb{R}^{0 \vert 1}, X ] }} \\ X & = & X } \end{displaymath} is called the \emph{[[odd tangent bundle]]} of $X$. \end{defn} \begin{example} \label{SuperpointsMapping}\hypertarget{SuperpointsMapping}{} \textbf{([[mapping space]] of [[superpoints]])} Let $V$ be a [[finite dimensional vector space|finite dimensional]] [[real vector space]] and consider its corresponding [[superpoint]] $V_{odd}$ from exampe \ref{SuperpointInducedByFiniteDimensionalVectorSpace}. Then the [[mapping space]] (def. \ref{MappingSpaceOutOfASuperCartesianSpace}) out of the [[superpoint]] $\mathbb{R}^{0\vert 1}$ (def. \ref{SuperCartesianSpace}) into $V_{odd}$ is the [[Cartesian product]] $V_{odd} \times V$ \begin{displaymath} [\mathbb{R}^{0\vert 1}, V_{odd}] \;\simeq\; V_{odd} \times V \,. \end{displaymath} By def. \ref{TangentBundleOdd} this says that $V_{odd} \times V$ is the ``[[odd tangent bundle]]'' of $V_{odd}$. \end{example} \begin{proof} Let $U$ be any [[super Cartesian space]]. Then by definition we have the following sequence of [[natural bijections]] of sets of plots \begin{displaymath} \begin{aligned} \left[ \mathbb{R}^{0\vert 1}, V_{odd} \right](U) & = Hom_{SuperSmoothSet}( \mathbb{R}^{0\vert 1} \times U, V_{odd} ) \\ & \simeq Hom_{\mathbb{R}sAlg}( \wedge^\bullet(V^\ast)\,,\, C^\infty(U)[\theta]/(\theta^2) ) \\ & \simeq Hom_{\mathbb{R}Vect}( V^\ast \,,\, (C^\infty(U)_{odd} \oplus C^\infty(U)_{even}\langle \theta\rangle ) \\ & \simeq Hom_{\mathbb{R}Vect}( V^\ast\,,\, C^\infty(U)_{odd} ) \,\times\, Hom_{\mathbb{R}Vect}( V^\ast, C^\infty(U)_{even} ) \\ & \simeq V_{odd}(U) \times V(U) \\ & \simeq (V_{odd} \times V)(U) \end{aligned} \end{displaymath} Here in the third line we used that the [[Grassmann algebra]] $\wedge^\bullet V^\ast$ is [[free construction|free]] on its generators in $V^\ast$, meaning that a homomorphism of [[supercommutative superalgebras]] out of the Grassmann algebra is uniquely fixed by the underlying degree-preserving [[linear function]] on these generators. Since in a [[Grassmann algebra]] all the generators are in odd degree, this is equivalently a linear map from $V^\ast$ to the odd-graded [[real vector space]] underlying $C^\infty(U)[\theta](\theta^2)$, which is the [[direct sum]] $C^\infty(U)_{odd} \oplus C^\infty(U)_{even}\langle \theta \rangle$. Then in the fourth line we used that [[finite coproduct|finite]] [[direct sums]] are [[Cartesian products]], so that linear maps into a direct sum are [[pairs]] of linear maps into the direct summands. That all these [[bijections]] are [[natural bijection|natural]] means that they are compatible with morphisms $U \to U'$ and therefore this says that $[\mathbb{R}^{0\vert 1}, V_{odd}]$ and $V_{odd} \times V$ are the same as seen by super-smooth plots, hence that they are [[isomorphism|isomorphic]] as [[super formal smooth set|super smooth sets]]. \end{proof} With this [[supergeometry]] in hand we finally turn to defining the [[Dirac field]] species: \begin{example} \label{DiracFieldBundle}\hypertarget{DiracFieldBundle}{} \textbf{([[field bundle]] for [[Dirac field]])} For $\Sigma$ being [[Minkowski spacetime]] (def. \ref{MinkowskiSpacetime}), of dimension $2+1$, $3+1$, $5+1$ or $9+1$, let $S$ be the [[spin representation]] from prop. \ref{SpinorRepsByNormedDivisionAlgebra}, whose underlying [[real vector space]] is \begin{displaymath} S \;=\; \left\{ \itexarray{ \mathbb{R}^2 \oplus \mathbb{R}^2 & \vert & p + 1 = 2+1 \\ \mathbb{C}^2 \oplus \mathbb{C}^2 &\vert& p + 1 = 3 + 1 \\ \mathbb{H}^2 \oplus \mathbb{H}^2 &\vert& p + 1 = 5 + 1 \\ \mathbb{O}^2 \oplus \mathbb{O}^2 &\vert& p + 1 = 9 + 1 } \right. \end{displaymath} With \begin{displaymath} S_{odd} \simeq \mathbb{R}^{0 \vert dim(S)} \end{displaymath} the corresponding [[superpoint]] (example \ref{SuperpointInducedByFiniteDimensionalVectorSpace}), then the [[field bundle]] for the \emph{[[Dirac field]]} on $\Sigma$ is \begin{displaymath} E \;\coloneqq\; \Sigma \times S_{odd} \overset{pr_1}{\to} \Sigma \,, \end{displaymath} hence the [[field fiber]] is the [[superpoint]] $S_{odd}$. This is the corresponding [[spinor bundle]] on [[Minkowski spacetime]], with fiber in odd super-degree. The traditional two-component [[spinor]] basis from remark \ref{TwoComponentSpinorNotation} provides [[fermionic field]] coordinates (def. \ref{FermionicBosonicFields}) on the [[field fiber]] $S_{odd}$: \begin{displaymath} \left( \psi^A \right)_{A = 1}^4 \;=\; \left( (\chi_a), (\xi^{\dagger \dot a}) \right)_{a,\dot a = 1,2} \,. \end{displaymath} Notice that these are $\mathbb{K}$-valued odd functions: For instance if $\mathbb{K} = \mathbb{C}$ then each $\chi_a$ in turn has two components, a [[real part]] and an [[imaginary part]]. A key point with the [[field bundle]] of the [[Dirac field]] (example \ref{DiracFieldBundle}) is that the field fiber coordinates $(\psi^A)$ or $\left((\chi_a), (\xi^{\dagger \dot a})\right)$ are now odd-graded elements in the function algebra on the field fiber, which is the [[Grassmann algebra]] $C^\infty(S_{odd}) = \wedge^\bullet(S^\ast)$. Therefore they anti-commute with each other: \begin{equation} \psi^\alpha \psi^{\beta} = - \psi^{\beta} \psi^\alpha \,. \label{DiracFieldCoordinatesAnticommute}\end{equation} \begin{quote}% snippet grabbed from (\href{Dirac+field#DermisekI8}{Dermisek 09}) \end{quote} \end{example} We analyze the special nature of the [[supergeometry|supergeometry]] [[space of field histories]] of the [[Dirac field]] a little (prop. \ref{DiracSpaceOfFieldHistories}) below and conclude by highlighting the crucial role of [[supergeometry]] (remark \ref{DiracFieldSupergeometric} below) \begin{defn} \label{DiracSpaceOfFieldHistories}\hypertarget{DiracSpaceOfFieldHistories}{} \textbf{([[space of field histories]] of the [[Dirac field]])} Let $E = \Sigma \times S_{odd} \overset{pr_1}{\to} \Sigma$ be the super-[[field bundle]] (def. \ref{FermionicBosonicFields}) for the [[Dirac field]] over [[Minkowski spacetime]] $\Sigma = \mathbb{R}^{p,1}$ from example \ref{DiracFieldBundle}. Then the corresponding [[supergeometry|supergeometric]] [[space of field histories]] \begin{displaymath} \Gamma_\Sigma(\Sigma \times S_{odd}) \;\in\; SuperSmoothSet \end{displaymath} from example \ref{SupergeometricSpaceOfFieldHistories} has the following properties: \begin{enumerate}% \item For $U = \mathbb{R}^n$ an ordinary [[Cartesian space]] (with no super-geometric thickening, def. \ref{SuperCartesianSpace}) there is only a single $U$-parameterized collection of [[field histories]], hence a single plot \begin{displaymath} \Psi_{(-)}\;\colon\;\mathbb{R}^n \overset{ 0 }{\longrightarrow} \Gamma_\Sigma(\Sigma \times S_{odd}) \end{displaymath} and this corresponds to the [[zero section]], hence to the trivial [[Dirac field]] \begin{displaymath} \Psi^A_{(-)} = 0 \,. \end{displaymath} \item For $U = \mathbb{R}^{n \vert 1}$ a [[super Cartesian space]] (\ref{SuperCartesianSpace}) with a single super-odd dimension, then $U$-parameterized collections of field histories \begin{displaymath} \Phi_{(-)} \;\colon\; \mathbb{R}^{n\vert 1} \longrightarrow \Gamma_\Sigma(\Sigma \times S_{odd}) \end{displaymath} are in [[natural bijection]] with plots of sections of the [[bosonic field|bosonic]]-field bundle with field fiber $S_{even} = S$ the [[spin representation]] regarded as an ordinary vector space: \begin{displaymath} \Psi_{(-)} \;\colon\; \mathbb{R}^n \longrightarrow \Gamma_\Sigma(\Sigma \times S_{even}) \,. \end{displaymath} \end{enumerate} Moreover, these two kinds of plots determine the fermionic field space completely: It is in fact [[isomorphism|isomorphic]], as a [[super vector space]], to the bosonic field space shifted to odd degree (as in example \ref{SuperpointInducedByFiniteDimensionalVectorSpace}): \begin{displaymath} \Gamma_\Sigma(\Sigma \times S_{odd}) \;\simeq\; \left( \Gamma_\Sigma(E\times S_{even}) \right)_{odd} \,. \end{displaymath} \end{defn} \begin{proof} In the first case, the plot is a morphism of [[super Cartesian spaces]] (def. \ref{SuperCartesianSpace}) of the form \begin{displaymath} \mathbb{R}^n \times \mathbb{R}^{p,1} \longrightarrow S_{odd} \,. \end{displaymath} By definitions this is [[formal duality|dually]] homomorphism of real [[supercommutative superalgebras]] \begin{displaymath} C^\infty(\mathbb{R}^n \times \mathbb{R}^{p,1}) \longleftarrow \wedge^\bullet S^\ast \end{displaymath} from the [[Grassmann algebra]] on the [[dual vector space]] of the [[spin representation]] $S$ to the ordinary algebras of [[smooth functions]] on $\mathbb{R}^n \times \mathbb{R}^{p,1}$. But the latter has no elements in odd degree, and hence all the Grassmann generators need to be send to zero. For the second case, notice that a morphism of the form \begin{displaymath} \mathbb{R}^{n\vert 1} \overset{\Phi_{(-)}}{\longrightarrow} S_{odd} \end{displaymath} is by def. \ref{TangentBundleOdd} [[natural bijection|naturally identified]] with a morphism of the form \begin{displaymath} \mathbb{R}^n \overset{\Psi_{(-)}}{\longrightarrow} [\mathbb{R}^{0 \vert 1}, S_{odd}] \simeq S_{odd} \times S_{even} \,, \end{displaymath} where the identification on the right is from example \ref{SuperpointsMapping}. By the [[universal property|nature]] of [[Cartesian products]] these morphisms in turn are [[natural bijection|naturally identified]] with [[pairs]] of morphisms of the form \begin{displaymath} \left( \itexarray{ \mathbb{R}^n &\overset{}{\longrightarrow}& S_{odd}\,, \\ \mathbb{R}^n &\overset{}{\longrightarrow}& S_{even} } \right) \,. \end{displaymath} Now, as in the first point above, here the first component is uniquely fixed to be the [[zero morphism]] $\mathbb{R}^n \overset{0}{\to} S_{odd}$; and hence only the second component is free to choose. This is precisely the claim to be shown. \end{proof} \begin{remark} \label{DiracFieldSupergeometric}\hypertarget{DiracFieldSupergeometric}{} \textbf{([[supergeometry|supergeometric]] nature of the [[Dirac field]])} Proposition \ref{DiracSpaceOfFieldHistories} how two basic facts about the [[Dirac field]], which may superficially seem to be in tension with each other, are properly unified by [[supergeometry]]: \begin{enumerate}% \item On the one hand a [[field history]] $\Psi$ of the [[Dirac field]] is \emph{not} an ordinary section of an ordinary [[vector bundle]]. In particular its component functions $\psi^A$ anti-commute with each other, which is not the case for ordinary functions, and this is crucial for the [[Lagrangian density]] of the Dirac field to be well defined, we come to this below in example \ref{LagrangianDensityForDiracField}. \item On the other hand a [[field history]] of the [[Dirac field]] is supposed to be a [[spinor]], hence a [[section]] of a [[spinor bundle]], which is an ordinary [[vector bundle]]. \end{enumerate} Therefore prop. \ref{DiracSpaceOfFieldHistories} serves to shows how, even though a Dirac field is not defined to be an ordinary section of an ordinary vector bundle, it is nevertheless encoded by such an ordinary section: One says that this ordinary section is a ``[[superfield]]-component'' of the Dirac field, the one linear in a Grassmann variable $\theta$. \end{remark} $\,$ This concludes our discussion of the concept of \emph{[[field (physics)|fields]]} itself. In the \hyperlink{FieldVariations}{following chapter} we consider the [[variational calculus]] of fields. \end{document}