\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A first idea of quantum field theory -- Geometry} \hypertarget{Geometry}{}\subsection*{{Geometry}}\label{Geometry} The [[geometry of physics]] is \emph{[[differential geometry]]}. This is the flavor of [[geometry]] which is modeled on [[Cartesian spaces]] $\mathbb{R}^n$ with [[smooth functions]] between them. Here we briefly review the basics of [[differential geometry]] on [[Cartesian spaces]]. In principle the only \textbf{background} assumed of the reader here is \begin{enumerate}% \item usual \emph{[[structural set theory|naive set theory]]} (e.g. [[Sets for Mathematics|Lawvere-Rosebrugh 03]]); \item the concept of the \emph{[[continuum]]}: the [[real line]] $\mathbb{R}$, the [[plane]] $\mathbb{R}^2$, etc. \item the concepts of \emph{[[differentiation]]} and \emph{[[integration]]} of functions on such [[Cartesian spaces]]; \end{enumerate} hence essentially the content of multi-variable [[differential calculus]]. We now discuss: \begin{itemize}% \item \emph{\hyperlink{SmoothFunctions}{Abstract coordinate systems}} \item \emph{\hyperlink{BundlesAndSections}{Fiber bundles}} \item \emph{\hyperlink{SyntheticDifferentialGeometry}{Synthetic differential geometry}} \item \emph{\hyperlink{DifferentialFormsAndCartanCalculus}{Differential forms}} \end{itemize} As we uncover [[Lagrangian field theory]] further below, we discover ever more general concepts of ``[[space]]'' in differential geometry, such as \emph{[[smooth manifolds]]}, \emph{[[diffeological spaces]]}, \emph{[[infinitesimal neighbourhoods]]}, \emph{[[supermanifolds]]}, \emph{[[Lie algebroids]]} and \emph{[[super L-∞ algebra|super]] [[Lie ∞-algebroids]]}. We introduce these incrementally as we go along: \textbf{more general [[spaces]] in [[differential geometry]] introduced further below} \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l} &&&&&&&&&&&[[higher differential geometry]]\\ \hline \textbf{[[differential geometry]]}&[[smooth manifolds]] (def. \ref{SmoothManifoldInsideDiffeologicalSpaces})&$\hookrightarrow$&[[diffeological spaces]] (def. \ref{DiffeologicalSpace})&$\hookrightarrow$&[[smooth sets]] (def. \ref{SmoothSet})&$\hookrightarrow$&[[formal smooth sets]] (def. \ref{FormalSmoothSet})&$\hookrightarrow$&[[super formal smooth sets]] (def. \ref{SuperFormalSmoothSet})&$\hookrightarrow$&[[super formal smooth ∞-groupoids]] (not needed in fully [[perturbative QFT]])\\ \textbf{[[infinitesimal]] [[formal geometry}&geometry]], [[Lie theory]]**&&&&&&&[[infinitesimally thickened points]] (def. \ref{InfinitesimallyThickendSmoothManifold})&&[[superpoints]] (def. \ref{SuperCartesianSpace})&\\ &&&&&&&&&&&\textbf{[[higher Lie theory]]}\\ \textbf{needed in [[QFT]] for:}&[[spacetime]] (def. \ref{MinkowskiSpacetime})&&[[space of field histories]] (def. \ref{DiffeologicalSpaceOfFieldHistories})&&&&[[Cauchy surface]] (def. \ref{CauchySurface}), [[perturbation theory]] (def. \ref{LocalObservablesOnInfinitesimalNeighbourhood})&&[[Dirac field]] (expl. \ref{DiracFieldBundle}), [[Pauli exclusion principle]]&&[[infinitesimal gauge symmetry]]/[[BRST complex]] (expl. \ref{LocalOffShellBRSTComplex})\\ \end{tabular} $\,$ \textbf{Abstract coordinate systems} What characterizes [[differential geometry]] is that it models [[geometry]] on \emph{the [[continuum]]}, namely the [[real line]] $\mathbb{R}$, together with its [[Cartesian products]] $\mathbb{R}^n$, regarded with its canonical [[smooth structure]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem} below). We may think of these \emph{[[Cartesian spaces]]} $\mathbb{R}^n$ as the ``abstract [[coordinate systems]]'' and of the [[smooth functions]] between them as the ``abstract [[coordinate transformations]]''. We will eventually consider \hyperlink{FieldBundles}{below} much more general ``[[smooth spaces]]'' $X$ than just the [[Cartesian spaces]] $\mathbb{R}^n$; but all of them are going to be understood by ``laying out abstract coordinate systems'' inside them, in the general sense of having smooth functions $f \colon \mathbb{R}^n \to X$ mapping a Cartesian space smoothly into them. All structure on [[generalized smooth spaces]] $X$ is thereby reduced to \emph{compatible systems} of structures on just [[Cartesian spaces]], one for each smooth ``probe'' $f\colon \mathbb{R}^n \to X$. This is called ``[[functorial geometry]]''. Notice that the popular concept of a \emph{[[smooth manifold]]} (def./prop. \ref{SmoothManifoldInsideDiffeologicalSpaces} below) is essentially that of a [[smooth space]] which \emph{locally looks just like} a [[Cartesian space]], in that there exist sufficiently many $f \colon \mathbb{R}^n \to X$ which are ([[open map|open]]) \emph{[[isomorphisms]]} onto their [[images]]. Historically it was a long process to arrive at the insight that it is wrong to \emph{fix} such local coordinate identifications $f$, or to have any structure depend on such a choice. But it is useful to go one step further: In [[functorial geometry]] we do not even focus attention on those $f \colon \mathbb{R}^n \to X$ that are isomorphisms onto their image, but consider \emph{all} ``probes'' of $X$ by ``abstract coordinate systems''. This makes [[differential geometry]] both simpler as well as more powerful. The analogous insight for [[algebraic geometry]] is due to \href{functorial+geometry#Grothendieck65}{Grothendieck 65}; it was transported to [[differential geometry]] by \href{synthetic+differential+geometry#Lawvere67}{Lawvere 67}. This allows to combine the best of two superficially disjoint worlds: On the one hand we may reduce all constructions and computations to [[coordinates]], the way traditionally done in the [[physics]] literature; on the other hand we have full conceptual control over the coordinate-free generalized spaces analyzed thereby. What makes this work is that all [[coordinate]]-constructions are \emph{[[functorial geometry|functorially]]} considered over all abstract coordinate systems. $\,$ \begin{defn} \label{CartesianSpacesAndSmoothFunctionsBetweenThem}\hypertarget{CartesianSpacesAndSmoothFunctionsBetweenThem}{} \textbf{([[Cartesian spaces]] and [[smooth functions]] between them)} For $n \in \mathbb{N}$ we say that the set $\mathbb{R}^n$ of [[n-tuples]] of [[real numbers]] is a \emph{[[Cartesian space]]}. This comes with the canonical [[coordinate functions]] \begin{displaymath} x^k \;\colon\; \mathbb{R}^n \longrightarrow \mathbb{R} \end{displaymath} which send an [[n-tuple]] of real numbers to the $k$th element in the tuple, for $k \in \{1, \cdots, n\}$. For \begin{displaymath} f \;\colon\; \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n'} \end{displaymath} any [[function]] between [[Cartesian spaces]], we may ask whether its [[partial derivative]] along the $k$th coordinate exists, denoted \begin{displaymath} \frac{\partial f}{\partial x^k} \;\colon\; \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n'} \,. \end{displaymath} If this exists, we may in turn ask that the [[partial derivative]] of the partial derivative exists \begin{displaymath} \frac{\partial^2 f}{\partial x^{k_1} \partial x^{k_2}} \coloneqq \frac{\partial}{\partial x^{k_2}} \frac{\partial f}{\partial x^{k_1}} \end{displaymath} and so on. A general higher [[partial derivative]] obtained this way is, if it exists, indexed by an [[n-tuple]] of [[natural numbers]] $\alpha \in \mathbb{N}^n$ and denoted \begin{equation} \partial_\alpha \;\coloneqq\; \frac{ \partial^{\vert \alpha \vert} f }{ \partial^{\alpha_1} x^1 \partial^{\alpha_2} x^2 \cdots \partial^{\alpha_n} x^n } \,, \label{PartialDerivativeWithManyIndices}\end{equation} where ${\vert \alpha\vert} \coloneqq \underoverset{n}{i = 1}{\sum} \alpha_i$ is the total \emph{order} of the partial derivative. If all partial derivative to all orders $\alpha \in \mathbb{N}^n$ of a [[function]] $f \colon \mathbb{R}^n \to \mathbb{R}^{n'}$ exist, then $f$ is called a \emph{[[smooth function]]}. \end{defn} Of course the [[composition]] $g \circ f$ of two smooth functions is again a [[smooth function]]. \begin{displaymath} \itexarray{ && \mathbb{R}^{n_2} \\ & {}^{\mathllap{f}}\nearrow && \searrow^{\mathrlap{g}} \\ \mathbb{R}^{n_1} && \underset{g \circ f}{\longrightarrow} && \mathbb{R}^{n_3} } \,. \end{displaymath} The inclined reader may notice that this means that [[Cartesian spaces]] with [[smooth functions]] between them constitute a \emph{[[category]]} (``[[CartSp]]''); but the reader not so inclined may ignore this. For the following it is useful to think of each [[Cartesian space]] as an \emph{abstract [[coordinate system]]}. We will be dealing with various [[generalized smooth spaces]] (see the table \hyperlink{NotionsOfGeometry}{below}), but they will all be characterized by a prescription for how to smoothly map abstract coordinate systems into them. \begin{example} \label{CoordinateFunctionsAreSmoothFunctions}\hypertarget{CoordinateFunctionsAreSmoothFunctions}{} \textbf{([[coordinate functions]] are [[smooth functions]])} Given a [[Cartesian space]] $\mathbb{R}^n$, then all its [[coordinate functions]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) \begin{displaymath} x^k \;\colon\; \mathbb{R}^n \longrightarrow \mathbb{R} \end{displaymath} are [[smooth functions]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}). For \begin{displaymath} f \colon \mathbb{R}^{n_1} \longrightarrow \mathbb{R}^{n_2} \end{displaymath} any [[smooth function]] and $a \in \{1, 2, \cdots, n_2\}$ write \begin{displaymath} f^a \coloneqq x^a \circ f \;\colon\; \mathbb{R}^{n_1} \overset{f}{\longrightarrow} \mathbb{R}^{n_2} \overset{x^a}{\longrightarrow} \mathbb{R} \end{displaymath} . for its [[composition]] with this [[coordinate function]]. \end{example} \begin{example} \label{AlgebraOfSmoothFunctionsOnCartesianSpaces}\hypertarget{AlgebraOfSmoothFunctionsOnCartesianSpaces}{} \textbf{([[algebra of functions|algebra of]] [[smooth functions]] on [[Cartesian spaces]])} For each $n \in \mathbb{N}$, the set \begin{displaymath} C^\infty(\mathbb{R}^n) \;\coloneqq\; Hom_{CartSp}(\mathbb{R}^n, \mathbb{R}) \end{displaymath} of [[real number]]-valued [[smooth functions]] $f \colon \mathbb{R}^n \to \mathbb{R}$ on the $n$-dimensional [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) becomes a [[commutative algebra|commutative]] [[associative algebra]] over the [[ring]] of [[real numbers]] by pointwise addition and multiplication in $\mathbb{R}$: for $f,g \in C^\infty(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$ \begin{enumerate}% \item $(f + g)(x) \coloneqq f(x) + g(x)$ \item $(f \cdot g)(x) \coloneqq f(x) \cdot g(x)$. \end{enumerate} The inclusion \begin{displaymath} \mathbb{R} \overset{const}{\hookrightarrow} C^\infty(\mathbb{R}^n) \end{displaymath} is given by the [[constant functions]]. We call this the \emph{[[real numbers|real]] [[algebra of functions|algebra of]] [[smooth functions]]} on $\mathbb{R}^n$: \begin{displaymath} C^\infty(\mathbb{R}^n) \;\in\; \mathbb{R} Alg \,. \end{displaymath} If \begin{displaymath} f \;\colon\; \mathbb{R}^{n_1} \longrightarrow \mathbb{R}^{n_2} \end{displaymath} is any [[smooth function]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) then [[composition|pre-composition]] with $f$ (``[[pullback of functions]]'') \begin{displaymath} \itexarray{ C^\infty(\mathbb{R}^{n_2}) &\overset{f^\ast}{\longrightarrow}& C^\infty(\mathbb{R}^{n_1}) \\ g &\mapsto& f^\ast g \coloneqq g \circ f } \end{displaymath} is an [[associative algebra|algebra]] [[homomorphism]]. Moreover, this is clearly compatible with [[composition]] in that \begin{displaymath} f_1^\ast(f_2^\ast g) = (f_2 \circ f_1)^\ast g \,. \end{displaymath} Stated more [[category theory|abstractly]], this means that assigning [[algebra of functions|algebras]] of [[smooth functions]] is a [[functor]] \begin{displaymath} C^\infty(-) \;\colon\; CartSp \longrightarrow \mathbb{R} Alg^{op} \end{displaymath} from the [[category]] [[CartSp]] of [[Cartesian spaces]] and [[smooth functions]] between them (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}), to the [[opposite category|opposite]] of the category $\mathbb{R}$[[Alg]] of $\mathbb{R}$-[[associative algebra|algebras]]. \end{example} \begin{defn} \label{LocalDiffeomorphismBetweenCartesianSpaces}\hypertarget{LocalDiffeomorphismBetweenCartesianSpaces}{} \textbf{([[local diffeomorphisms]] and [[open embeddings]] of [[Cartesian spaces]])} A [[smooth function]] $f \colon \mathbb{R}^{n} \to \mathbb{R}^{n}$ from one [[Cartesian space]] to itself (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) is called a \emph{[[local diffeomorphism]]}, denoted \begin{displaymath} f \;\colon\; \mathbb{R}^{n} \overset{et}{\longrightarrow} \mathbb{R}^n \end{displaymath} if the [[determinant]] of the [[matrix]] of [[partial derivatives]] (the ``[[Jacobian]]'' of $f$) is everywhere non-vanishing \begin{displaymath} det \left( \itexarray{ \frac{\partial f^1}{\partial x^1}(x) &\cdots& \frac{\partial f^n}{\partial x^1}(x) \\ \vdots && \vdots \\ \frac{\partial f^1}{\partial x^n}(x) &\cdots& \frac{\partial f^n}{\partial x^n}(x) } \right) \;\neq\; 0 \phantom{AAAA} \text{for all} \, x \in \mathbb{R}^n \,. \end{displaymath} If the function $f$ is both a [[local diffeomorphism]], as above, as well as an [[injective function]] then we call it an \emph{[[open embedding]]}, denoted \begin{displaymath} f \;\colon\; \mathbb{R}^n \overset{\phantom{A}et\phantom{A}}{\hookrightarrow} \mathbb{R}^n \,. \end{displaymath} \end{defn} \begin{defn} \label{DifferentiablyGoodOpenCover}\hypertarget{DifferentiablyGoodOpenCover}{} \textbf{([[good open cover]] of [[Cartesian spaces]])} For $\mathbb{R}^n$ a [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}), a \emph{[[differentiably good open cover]]} is \begin{itemize}% \item an [[indexed set]] \begin{displaymath} \left\{ \mathbb{R}^n \underoverset{et}{\phantom{AA}f_i\phantom{AA}}{\hookrightarrow} \mathbb{R}^n \right\}_{i \in I} \end{displaymath} of [[open embeddings]] (def. \ref{LocalDiffeomorphismBetweenCartesianSpaces}) \end{itemize} such that the [[images]] \begin{displaymath} U_i \coloneqq im(f_i) \subset \mathbb{R}^n \end{displaymath} satisfy: \begin{enumerate}% \item ([[open cover]]) every point of $\mathbb{R}^n$ is contained in at least one of the $U_i$; \item ([[good open cover|good]]) all [[finite set|finite]] [[intersections]] $U_{i_1} \cap \cdots \cap U_{i_k} \subset \mathbb{R}^n$ are either [[empty set]] or themselves images of [[open embeddings]] according to def. \ref{LocalDiffeomorphismBetweenCartesianSpaces}. \end{enumerate} The inclined reader may notice that the concept of [[differentiably good open covers]] from def. \ref{DifferentiablyGoodOpenCover} is a \emph{[[coverage]]} on the [[category]] \emph{[[CartSp]]} of [[Cartesian spaces]] with [[smooth functions]] between them, making it a \emph{[[site]]}, but the reader not so inclined may ignore this. \end{defn} ([[schreiber:Cech Cocycles for Differential characteristic Classes|Fiorenza-Schreiber-Stasheff 12, def. 6.3.9]]) $\,$ $\,$ \textbf{[[fiber bundles]]} Given any context of [[objects]] and [[morphisms]] between them, such as the [[Cartesian spaces]] and [[smooth functions]] from def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem} it is of interest to fix one [[object]] $X$ and consider other objects \emph{[[dependent type|parameterized over]]} it. These are called \emph{[[bundles]]} (def. \ref{BundlesAndFibers}) below. For reference, we briefly discuss here the basic concepts related to [[bundles]] in the context of [[Cartesian spaces]]. Of course the theory of bundles is mostly trivial over Cartesian spaces; it gains its main interest from its generalization to more general [[smooth manifolds]] (def./prop. \ref{SmoothManifoldInsideDiffeologicalSpaces} below). It is still worthwhile for our development to first consider the relevant concepts in this simple case first. For more exposition see at \emph{[[fiber bundles in physics]]}. $\,$ \begin{defn} \label{BundlesAndFibers}\hypertarget{BundlesAndFibers}{} \textbf{([[bundles]])} We say that a [[smooth function]] $E \overset{fb}{\to} X$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) is a \emph{[[bundle]]} just to amplify that we think of it as exhibiting $E$ as being a ``space over $X$'': \begin{displaymath} \itexarray{ E \\ \downarrow\mathrlap{fb} \\ X } \,. \end{displaymath} For $x \in X$ a point, we say that the \emph{[[fiber]]} of this [[bundle]] over $x$ is the [[pre-image]] \begin{equation} E_x \coloneqq fb^{-1}(\{x\}) \subset E \label{FiberOfAFiberBundle}\end{equation} of the point $x$ under the smooth function. We think of $fb$ as exhibiting a ``smoothly varying'' set of [[fiber]] spaces over $X$. Given two [[bundles]] $E_1 \overset{fb_1}{\to} X$ and $E_2 \overset{fb_2}{\to} X$ over $X$, a \emph{[[homomorphism]] of bundles} between them is a [[smooth function]] $f \colon E_1 \to E_2$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) between their total spaces which respects the bundle projections, in that \begin{displaymath} fb_2 \circ f = fb_1 \phantom{AAAA} \text{i.e.} \phantom{AAA} \itexarray{ E_1 && \overset{f}{\longrightarrow} && E_2 \\ & {}_{\mathllap{fb_1}}\searrow && \swarrow_{\mathrlap{fb_2}} \\ && X } \,. \end{displaymath} Hence a bundle homomorphism is a smooth function that sends [[fibers]] to [[fibers]] over the same point: \begin{displaymath} f\left( (E_1)_x \right) \;\subset\; (E_2)_x \,. \end{displaymath} The inclined reader may notice that this defines a [[category]] of [[bundles]] over $X$, which is in fact just the \emph{[[slice category]]} $CartSp_{/X}$; the reader not so inclined may ignore this. \end{defn} \begin{defn} \label{Sections}\hypertarget{Sections}{} \textbf{([[sections]])} Given a [[bundle]] $E \overset{fb}{\to} X$ (def. \ref{BundlesAndFibers}) a \emph{[[section]]} is a [[smooth function]] $s \colon X \to E$ such that \begin{displaymath} fb \circ s = id_X \phantom{AAAAA} \itexarray{ && E \\ & {}^{\mathllap{s}}\nearrow & \downarrow\mathrlap{fb} \\ X &=& X } \,. \end{displaymath} This means that $s$ sends every point $x \in X$ to an element in the [[fiber]] over that point \begin{displaymath} s(x) \in E_x \,. \end{displaymath} We write \begin{displaymath} \Gamma_X(E) \coloneqq \left\{ \itexarray{ && E \\ & {}^{\mathllap{s}}\nearrow & \downarrow^\mathrlap{fb} \\ X &=& X } \phantom{fb} \right\} \end{displaymath} for the [[space of sections|set of sections]] of a bundle. For $E_1 \overset{f_1}{\to} X$ and $E_2 \overset{f_2}{\to} X$ two [[bundles]] and for \begin{displaymath} \itexarray{ E_1 && \overset{f}{\longrightarrow} && E_2 \\ & {}_{\mathllap{fb_1}}\searrow && \swarrow_{\mathrlap{fb_2}} \\ && X } \end{displaymath} a bundle [[homomorphism]] between them (def. \ref{BundlesAndFibers}), then [[composition]] with $f$ sends [[sections]] to [[sections]] and hence yields a [[function]] denoted \begin{displaymath} \itexarray{ \Gamma_X(E_1) &\overset{f_\ast}{\longrightarrow}& \Gamma_X(E_2) \\ s &\mapsto& f \circ s } \,. \end{displaymath} \end{defn} \begin{example} \label{TrivialBundleOnCartesianSpace}\hypertarget{TrivialBundleOnCartesianSpace}{} \textbf{([[trivial bundle]])} For $X$ and $F$ [[Cartesian spaces]], then the [[Cartesian product]] $X \times F$ equipped with the [[projection]] \begin{displaymath} \itexarray{ X \times F \\ \downarrow^\mathrlap{pr_1} \\ X } \end{displaymath} to $X$ is a [[bundle]] (def. \ref{BundlesAndFibers}), called the \emph{[[trivial bundle]]} with [[fiber]] $F$. This represents the \emph{constant} smoothly varying set of [[fibers]], constant on $F$ If $F = \ast$ is the point, then this is the identity bundle \begin{displaymath} \itexarray{ X \\ \downarrow\mathrlap{id} \\ X } \,. \end{displaymath} Given any [[bundle]] $E \overset{fb}{\to} X$, then a bundle homomorphism (def. \ref{BundlesAndFibers}) from the identity bundle to $E \overset{fb}{\to} X$ is equivalently a [[section]] of $E \overset{fb}{\to} X$ (def. \ref{Sections}) \begin{displaymath} \itexarray{ X && \overset{s}{\longrightarrow} && E \\ & {}_{\mathllap{id}}\searrow && \swarrow_{\mathrlap{fb}} \\ && X } \end{displaymath} \end{example} \begin{defn} \label{FiberBundle}\hypertarget{FiberBundle}{} \textbf{([[fiber bundle]])} A [[bundle]] $E \overset{fb}{\to} X$ (def. \ref{BundlesAndFibers}) is called a \emph{[[fiber bundle]]} with \emph{typical fiber} $F$ if there exists a [[differentiably good open cover]] $\{U_i \hookrightarrow X\}_{i \in I}$ (def. \ref{DifferentiablyGoodOpenCover}) such that the restriction of $fb$ to each $U_i$ is [[isomorphism|isomorphic]] to the [[trivial fiber bundle]] with fiber $F$ over $U_i$. Such [[diffeomorphisms]] $f_i \colon U_i \times F \overset{\simeq}{\to} E\vert_{U_i}$ are called \emph{[[local trivializations]]} of the fiber bundle: \begin{displaymath} \itexarray{ U_i \times F &\underoverset{\simeq}{f_i}{\longrightarrow}& E\vert_{U_i} \\ & {}_{\mathllap{pr_1}}\searrow & \downarrow\mathrlap{fb\vert_{U_i}} \\ && U_i } \,. \end{displaymath} \end{defn} \begin{defn} \label{VectorBundle}\hypertarget{VectorBundle}{} \textbf{([[vector bundle]])} A \emph{[[vector bundle]]} is a [[fiber bundle]] $E \overset{vb}{\to} X$ (def. \ref{FiberBundle}) with typical fiber a [[vector space]] $V$ such that there exists a [[local trivialization]] $\{U_i \times V \underoverset{\simeq}{f_i}{\to} E\vert_{U_i}\}_{i \in I}$ whose \emph{gluing functions} \begin{displaymath} U_i \cap U_j \times V \overset{f_i\vert_{U_i \cap U_j}}{\longrightarrow} E\vert_{U_i \cap U_j} \overset{f_j^{-1}\vert_{U_i \cap U_j}}{\longrightarrow} U_i \cap U_j \times V \end{displaymath} for all $i,j \in I$ are [[linear functions]] over each point $x \in U_i \cap U_j$. A [[homomorphism]] of [[vector bundle]] is a bundle morphism $f$ (def. \ref{BundlesAndFibers}) such that there exist [[local trivializations]] on both sides with respect to which $g$ is [[fiber]]-wise a [[linear map]]. The inclined reader may notice that this makes vector bundles over $X$ a [[category]] (denoted $Vect_{/X}$); the reader not so inclined may ignore this. \end{defn} \begin{example} \label{ModuleOfSectionsOfAVectorBundle}\hypertarget{ModuleOfSectionsOfAVectorBundle}{} \textbf{([[module]] of [[sections]] of a [[vector bundle]])} Given a [[vector bundle]] $E \overset{vb}{\to} X$ (def. \ref{VectorBundle}), then its [[space of sections|set of sections]] $\Gamma_X(E)$ (def. \ref{BundlesAndFibers}) becomes a [[real vector space]] by [[fiber]]-wise multiplication with [[real numbers]]. Moreover, it becomes a [[module]] over the [[algebra of functions|algebra of]] [[smooth functions]] $C^\infty(X)$ (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}) by the same [[fiber]]-wise multiplication: \begin{displaymath} \itexarray{ C^\infty(X) \otimes_{\mathbb{R}} \Gamma_X(E) &\longrightarrow& \Gamma_X(E) \\ (f,s) &\mapsto& (x \mapsto f(x) \cdot s(x)) } \,. \end{displaymath} For $E_1 \overset{fb_1}{\to} X$ and $E_2 \overset{fb_2}{\to} X$ two [[vector bundles]] and \begin{displaymath} \itexarray{ E_1 && \overset{f}{\longrightarrow} && E_2 \\ & {}_{\mathllap{fb_1}}\searrow && \swarrow_{\mathrlap{fb_2}} \\ && X } \end{displaymath} a vector bundle homomorphism (def. \ref{VectorBundle}) then the induced function on sections (def. \ref{Sections}) \begin{displaymath} f_\ast \;\colon\; \Gamma_X(E_1) \longrightarrow \Gamma_X(E_2) \end{displaymath} is compatible with this [[action]] by smooth functions and hence constitutes a [[homomorphism]] of $C^\infty(X)$-[[modules]]. The inclined reader may notice that this means that taking [[spaces of sections]] yields a [[functor]] \begin{displaymath} \Gamma_X(-) \;\colon\; Vect_{/X} \longrightarrow C^\infty(X) Mod \end{displaymath} from the [[category of vector bundles]] over $X$ to that over [[modules]] over $C^\infty(X)$. \end{example} \begin{example} \label{TangentVectorFields}\hypertarget{TangentVectorFields}{} \textbf{([[tangent vector fields]] and [[tangent bundle]])} For $\mathbb{R}^n$ a [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) the [[trivial vector bundle]] (example \ref{TrivialBundleOnCartesianSpace}, def. \ref{VectorBundle}) \begin{displaymath} \itexarray{ T \mathbb{R}^n &\coloneqq& \mathbb{R}^n \times \mathbb{R}^n \\ \mathllap{tb}\downarrow && \downarrow\mathrlap{pr_1} \\ \mathbb{R}^n &=& \mathbb{R}^n } \end{displaymath} is called the \emph{[[tangent bundle]]} of $\mathbb{R}^n$. With $(x^a)_{a = 1}^n$ the [[coordinate functions]] on $\mathbb{R}^n$ (def. \ref{CoordinateFunctionsAreSmoothFunctions}) we write $(\partial_a)_{a = 1}^n$ for the corresponding [[linear basis]] of $\mathbb{R}^n$ regarded as a [[vector space]]. Then a general [[section]] (def. \ref{Sections}) \begin{displaymath} \itexarray{ && T \mathbb{R}^n \\ & {}^{\mathllap{v}}\nearrow& \downarrow\mathrlap{tb} \\ \mathbb{R}^n &=& \mathbb{R}^n } \end{displaymath} of the [[tangent bundle]] has a unique expansion of the form \begin{displaymath} v = v^a \partial_a \end{displaymath} where a sum over indices is understood ([[Einstein summation convention]]) and where the components $(v^a \in C^\infty(\mathbb{R}^n))_{a = 1}^n$ are [[smooth functions]] on $\mathbb{R}^n$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}). Such a $v$ is also called a smooth \emph{[[tangent vector field]]} on $\mathbb{R}^n$. Each tangent vector field $v$ on $\mathbb{R}^n$ determines a [[partial derivative]] on [[smooth functions]] \begin{displaymath} \itexarray{ C^\infty(\mathbb{R}^n) &\overset{D_v}{\longrightarrow}& C^\infty(\mathbb{R}^n) \\ f &\mapsto& \mathrlap{ D_v f \coloneqq v^a \partial_a (f) \coloneqq \sum_a v^a \frac{\partial f}{\partial x^a} } } \,. \end{displaymath} By the [[product law]] of [[differentiation]], this is a [[derivation]] on the [[algebra of functions|algebra of]] [[smooth functions]] (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}) in that \begin{enumerate}% \item it is an $\mathbb{R}$-[[linear map]] in that \begin{displaymath} D_v( c_1 f_1 + c_2 f_2 ) = c_1 D_v f_1 + c_2 D_v f_2 \end{displaymath} \item it satisfies the [[Leibniz rule]] \begin{displaymath} D_v(f_1 \cdot f_2) = (D_v f_1) \cdot f_2 + f_1 \cdot (D_v f_2) \end{displaymath} \end{enumerate} for all $c_1, c_2 \in \mathbb{R}$ and all $f_1, f_2 \in C^\infty(\mathbb{R}^n)$. Hence regarding [[tangent vector fields]] as [[partial derivatives]] constitutes a [[linear function]] \begin{displaymath} D \;\colon\; \Gamma_{\mathbb{R}^n}(T \mathbb{R}^n) \longrightarrow Der(C^\infty(\mathbb{R}^n)) \end{displaymath} from the [[space of sections]] of the [[tangent bundle]]. In fact this is a [[homomorphism]] of $C^\infty(\mathbb{R}^n)$-[[modules]] (example \ref{ModuleOfSectionsOfAVectorBundle}), in that for $f \in C^\infty(\mathbb{R}^n)$ and $v \in \Gamma_{\mathbb{R}^n}(T \mathbb{R}^n)$ we have \begin{displaymath} D_{f v}(-) = f \cdot D_v(-) \,. \end{displaymath} \end{example} \begin{example} \label{VerticalTangentBundle}\hypertarget{VerticalTangentBundle}{} \textbf{([[vertical tangent bundle]])} Let $E \overset{fb}{\to} \Sigma$ be a [[fiber bundle]]. Then its \emph{[[vertical tangent bundle]]} $T_\Sigma E \overset{T fb}{\to} \Sigma$ is the [[fiber bundle]] (def. \ref{FiberBundle}) over $\Sigma$ whose [[fiber]] over a point is the [[tangent bundle]] (def. \ref{TangentVectorFields}) of the fiber of $E \overset{fb}{\to}\Sigma$ over that point: \begin{displaymath} (T_\Sigma E)_x \coloneqq T(E_x) \,. \end{displaymath} If $E \simeq \Sigma \times F$ is a [[trivial fiber bundle]] with [[fiber]] $F$, then its vertical vector bundle is the trivial fiber bundle with fiber $T F$. \end{example} \begin{defn} \label{DualVectorBundle}\hypertarget{DualVectorBundle}{} \textbf{([[dual vector bundle]])} For $E \overset{vb}{\to} \Sigma$ a [[vector bundle]] (def. \ref{VectorBundle}), its \emph{[[dual vector bundle]]} is the vector bundle whose [[fiber]] \eqref{FiberOfAFiberBundle} over $x \in \Sigma$ is the [[dual vector space]] of the corresponding fiber of $E \to \Sigma$: \begin{displaymath} (E^\ast)_x \;\coloneqq\; (E_x)^\ast \,. \end{displaymath} The defining pairing of [[dual vector spaces]] $(E_x)^\ast \otimes E_x \to \mathbb{R}$ applied pointwise induces a pairing on the [[modules]] of [[sections]] (def. \ref{ModuleOfSectionsOfAVectorBundle}) of the original vector bundle and its dual with values in the [[smooth functions]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}): \begin{equation} \itexarray{ \Gamma_\Sigma(E) \otimes_{C^\infty(X)} \Gamma_\Sigma(E^\ast) &\longrightarrow& C^\infty(\Sigma) \\ (v,\alpha) &\mapsto& (v \cdot \alpha \colon x \mapsto \alpha_x(v_x) ) } \label{PairingOfDualSections}\end{equation} \end{defn} $\,$ \textbf{[[synthetic differential geometry]]} Below we encounter generalizations of ordinary [[differential geometry]] that include explicit ``[[infinitesimals]]'' in the guise of \emph{[[infinitesimally thickened points]]}, as well as ``super-graded infinitesimals'', in the guise of \emph{[[superpoints]]} (necessary for the description of [[fermion fields]] such as the [[Dirac field]]). As we discuss \hyperlink{FieldBundles}{below}, these structures are naturally incorporated into [[differential geometry]] in just the same way as [[Grothendieck]] introduced them into [[algebraic geometry]] (in the guise of ``[[formal schemes]]''), namely in terms of [[formal dual|formally dual]] [[rings of functions]] with [[nilpotent ideals]]. That this also works well for [[differential geometry]] rests on the following three basic but important properties, which say that [[smooth functions]] behave ``more algebraically'' than their definition might superficially suggest: \begin{prop} \label{AlgebraicFactsOfDifferentialGeometry}\hypertarget{AlgebraicFactsOfDifferentialGeometry}{} \textbf{(the three magic algebraic properties of [[differential geometry]])} \begin{enumerate}% \item \textbf{[[embedding of smooth manifolds into formal duals of R-algebras|embedding of Cartesian spaces into formal duals of R-algebras]]} For $X$ and $Y$ two [[Cartesian spaces]], the [[smooth functions]] $f \colon X \longrightarrow Y$ between them (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) are in [[natural bijection]] with their induced algebra [[homomorphisms]] $C^\infty(X) \overset{f^\ast}{\longrightarrow} C^\infty(Y)$ (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}), so that one may equivalently handle [[Cartesian spaces]] entirely via their $\mathbb{R}$-algebras of smooth functions. Stated more [[category theory|abstractly]], this means equivalently that the [[functor]] $C^\infty(-)$ that sends a [[smooth manifold]] $X$ to its $\mathbb{R}$-[[associative algebra|algebra]] $C^\infty(X)$ of [[smooth functions]] (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}) is a \emph{[[fully faithful functor]]}: \begin{displaymath} C^\infty(-) \;\colon\; SmthMfd \overset{\phantom{AAAA}}{\hookrightarrow} \mathbb{R} Alg^{op} \,. \end{displaymath} (\href{embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras#KolarSlovakMichor93}{Kolar-Slovak-Michor 93, lemma 35.8, corollaries 35.9, 35.10}) \item \textbf{[[smooth Serre-Swan theorem|embedding of smooth vector bundles into formal duals of R-algebra modules]]} For $E_1 \overset{vb_1}{\to} X$ and $E_2 \overset{vb_2}{\to} X$ two [[vector bundle]] (def. \ref{VectorBundle}) there is then a [[natural bijection]] between vector bundle [[homomorphisms]] $f \colon E_1 \to E_2$ and the [[homomorphisms]] of [[modules]] $f_\ast \;\colon\; \Gamma_X(E_1) \to \Gamma_X(E_2)$ that these induces between the [[spaces of sections]] (example \ref{ModuleOfSectionsOfAVectorBundle}). More [[category theory|abstractly]] this means that the [[functor]] $\Gamma_X(-)$ is a [[fully faithful functor]] \begin{displaymath} \Gamma_X(-) \;\colon\; VectBund_X \overset{\phantom{AAAA}}{\hookrightarrow} C^\infty(X) Mod \end{displaymath} (\href{smooth+Serre-Swan+theorem#Nestruev03}{Nestruev 03, theorem 11.29}) Moreover, the [[modules]] over the $\mathbb{R}$-algebra $C^\infty(X)$ of [[smooth functions]] on $X$ which arise this way as [[sections]] of [[smooth vector bundles]] over a [[Cartesian space]] $X$ are precisely the [[finitely generated module|finitely generated]] [[free modules]] over $C^\infty(X)$. (\href{smooth+Serre-Swan+theorem#Nestruev03}{Nestruev 03, theorem 11.32}) \item \textbf{[[derivations of smooth functions are vector fields|vector fields are derivations of smooth functions]]}. For $X$ a [[Cartesian space]] (example \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}), then any [[derivation]] $D \colon C^\infty(X) \to C^\infty(X)$ on the $\mathbb{R}$-[[associative algebra|algebra]] $C^\infty(X)$ of [[smooth functions]] (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}) is given by [[differentiation]] with respect to a uniquely defined smooth [[tangent vector field]]: The function that regards [[tangent vector fields]] with [[derivations]] from example \ref{TangentVectorFields} \begin{displaymath} \itexarray{ \Gamma_X(T X) &\overset{\phantom{A}\simeq\phantom{A}}{\longrightarrow}& Der(C^\infty(X)) \\ v &\mapsto& D_v } \end{displaymath} is in fact an [[isomorphism]]. (This follows directly from the \emph{[[Hadamard lemma]]}.) \end{enumerate} \end{prop} Actually all three statements in prop. \ref{AlgebraicFactsOfDifferentialGeometry} hold not just for [[Cartesian spaces]], but generally for [[smooth manifolds]] (def./prop. \ref{SmoothManifoldInsideDiffeologicalSpaces} below; if only we generalize in the second statement from [[free modules]] to [[projective modules]]. However for our development here it is useful to first focus on just [[Cartesian spaces]] and then bootstrap the theory of [[smooth manifolds]] and much more from that, which we do \hyperlink{FieldBundles}{below}. $\,$ $\,$ \textbf{[[differential forms]]} We introduce and discuss [[differential forms]] on [[Cartesian spaces]]. \begin{defn} \label{Differential1FormsOnCartesianSpaces}\hypertarget{Differential1FormsOnCartesianSpaces}{} \textbf{([[differential 1-forms]] on [[Cartesian spaces]] and the [[cotangent bundle]])} For $n \in \mathbb{N}$ a \emph{[[smooth differential 1-form]]} $\omega$ on a [[Cartesian space]] $\mathbb{R}^n$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) is an [[n-tuple]] \begin{displaymath} \left(\omega_i \in CartSp\left(\mathbb{R}^n,\mathbb{R}\right)\right)_{i = 1}^n \end{displaymath} of [[smooth functions]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}), which we think of equivalently as the [[coefficients]] of a [[formal linear combination]] \begin{displaymath} \omega = \omega_i d x^i \end{displaymath} on a [[set]] $\{d x^1, d x^2, \cdots, d x^n\}$ of [[cardinality]] $n$. Here a sum over repeated indices is tacitly understood ([[Einstein summation convention]]). Write \begin{displaymath} \Omega^1(\mathbb{R}^k) \simeq CartSp(\mathbb{R}^k, \mathbb{R})^{\times k}\in Set \end{displaymath} for the set of smooth [[differential 1-forms]] on $\mathbb{R}^k$. We may think of the expressions $(d x^a)_{a = 1}^n$ as a [[linear basis]] for the [[dual vector space]] $\mathbb{R}^n$. With this the [[differential 1-forms]] are equivalently the [[sections]] (def. \ref{Sections}) of the [[trivial vector bundle]] (example \ref{TrivialBundleOnCartesianSpace}, def. \ref{VectorBundle}) \begin{displaymath} \itexarray{ T^\ast \mathbb{R}^n &\coloneqq& \mathbb{R}^n \times (\mathbb{R}^n)^\ast \\ \mathllap{cb}\downarrow && \downarrow\mathrlap{pr_1} \\ \mathbb{R}^n &=& \mathbb{R}^n } \end{displaymath} called the \emph{[[cotangent bundle]]} of $\mathbb{R}^n$ (def. \ref{Differential1FormsOnCartesianSpaces}): \begin{displaymath} \Omega^1(\mathbb{R}^n) = \Gamma_{\mathbb{R}^n}(T^\ast \mathbb{R}^n) \,. \end{displaymath} This amplifies via example \ref{ModuleOfSectionsOfAVectorBundle} that $\Omega^1(\mathbb{R}^n)$ has the [[structure]] of a [[module]] over the [[algebra of functions|algebra of]] [[smooth functions]] $C^\infty(\mathbb{R}^n)$, by the evident multiplication of [[differential 1-forms]] with [[smooth functions]]: \begin{enumerate}% \item The set $\Omega^1(\mathbb{R}^k)$ of [[differential 1-forms]] in a [[Cartesian space]] (def. \ref{Differential1FormsOnCartesianSpaces}) is naturally an [[abelian group]] with addition given by componentwise addition \begin{displaymath} \begin{aligned} \omega + \lambda & = \omega_i d x^i + \lambda_i d x^i \\ & = (\omega_i + \lambda_i) d x^i \end{aligned} \,, \end{displaymath} \item The abelian group $\Omega^1(\mathbb{R}^k)$ is naturally equipped with the structure of a [[module]] over the [[algebra of functions|algebra of]] [[smooth functions]] $C^\infty(\mathbb{R}^k)$ (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}), where the [[action]] $C^\infty(\mathbb{R}^k) \times\Omega^1(\mathbb{R}^k) \to \Omega^1(\mathbb{R}^k)$ is given by componentwise multiplication \begin{displaymath} f \cdot \omega = ( f \cdot \omega_i) d x^i \,. \end{displaymath} \end{enumerate} Accordingly there is a canonical pairing between [[differential 1-forms]] and [[tangent vector fields]] (example \ref{TangentVectorFields}) \begin{equation} \itexarray{ \Gamma_{\mathbb{R}^n}(T \mathbb{R}^n) \otimes_{\mathbb{R}} \Gamma_{\mathbb{R}^n}(T \ast \mathbb{R}^n) &\overset{\iota_{(-)}(-) }{\longrightarrow}& C^\infty(\mathbb{R}^n) \\ (v,\omega) &\mapsto& \mathrlap{ \iota_v \omega \coloneqq v^a \omega_a } } \label{PairingVectorFieldsWithDifferential1Forms}\end{equation} With [[differential 1-forms]] in hand, we may collect all the first-order [[partial derivatives]] of a [[smooth function]] into a single object: the \emph{[[exterior derivative]]} or \emph{[[de Rham differential]]} is the $\mathbb{R}$-[[linear function]] \begin{equation} \itexarray{ C^\infty(\mathbb{R}^n) &\overset{d}{\longrightarrow}& \Omega^1(\mathbb{R}^n) \\ f &\mapsto& \mathrlap{ d f \coloneqq \frac{\partial f}{ \partial x^a} d x^a } } \,. \label{deRhamDifferentialOnFunctionsOnCartesianSpace}\end{equation} Under the above pairing with [[tangent vector fields]] $v$ this yields the particular [[partial derivative]] along $v$: \begin{displaymath} \iota_v d f = D_v f = v^a \frac{\partial f}{\partial x^a} \,. \end{displaymath} \end{defn} We think of $d x^i$ as a measure for [[infinitesimal space|infinitesimal]] displacements along the $x^i$-[[coordinate]] of a [[Cartesian space]]. If we have a measure of infintesimal displacement on some $\mathbb{R}^n$ and a smooth function $f \colon \mathbb{R}^{\tilde n} \to \mathbb{R}^n$, then this induces a measure for infinitesimal displacement on $\mathbb{R}^{\tilde n}$ by sending whatever happens there first with $f$ to $\mathbb{R}^n$ and then applying the given measure there. This is captured by the following definition: \begin{defn} \label{PullbackOfDifferential1FormsOnCartesianSpaces}\hypertarget{PullbackOfDifferential1FormsOnCartesianSpaces}{} \textbf{([[pullback of differential forms|pullback of differential 1-forms]])} For $\phi \colon \mathbb{R}^{\tilde k} \to \mathbb{R}^k$ a [[smooth function]], the \textbf{[[pullback of differential forms|pullback of differential 1-forms]]} along $\phi$ is the [[function]] \begin{displaymath} \phi^* \colon \Omega^1(\mathbb{R}^{k}) \to \Omega^1(\mathbb{R}^{\tilde k}) \end{displaymath} between sets of differential 1-forms, def. \ref{Differential1FormsOnCartesianSpaces}, which is defined on [[basis]]-elements by \begin{displaymath} \phi^* d x^i \;\coloneqq\; \frac{\partial \phi^i}{\partial \tilde x^j} d \tilde x^j \end{displaymath} and then extended linearly by \begin{displaymath} \begin{aligned} \phi^* \omega & = \phi^* \left( \omega_i d x^i \right) \\ & \coloneqq \left(\phi^* \omega\right)_i \frac{\partial \phi^i }{\partial \tilde x^j} d \tilde x^j \\ & = (\omega_i \circ \phi) \cdot \frac{\partial \phi^i }{\partial \tilde x^j} d \tilde x^j \end{aligned} \,. \end{displaymath} This is compatible with [[identity morphisms]] and [[composition]] in that \begin{equation} (id_{\mathbb{R}^n})^\ast = id_{\Omega^1(\mathbb{R}^n)} \phantom{AAAA} (g \circ f)^\ast = f^\ast \circ g^\ast \,. \label{PullbackOfDifferentialFormsCompatibleWithComposition}\end{equation} Stated more [[category theory|abstractly]], this just means that [[pullback of differential forms|pullback of differential 1-forms]] makes the assignment of sets of differential 1-forms to [[Cartesian spaces]] a [[contravariant functor|contravariant]] [[functor]] \begin{displaymath} \Omega^1(-) \;\colon\; CartSp^{op} \longrightarrow Set \,. \end{displaymath} \end{defn} The following definition captures the idea that if $d x^i$ is a measure for displacement along the $x^i$-[[coordinate]], and $d x^j$ a measure for displacement along the $x^j$ coordinate, then there should be a way to get a measure, to be called $d x^i \wedge d x^j$, for [[infinitesimal]] \emph{[[surfaces]]} (squares) in the $x^i$-$x^j$-plane. And this should keep track of the [[orientation]] of these squares, with \begin{displaymath} d x^j \wedge d x^i = - d x^i \wedge d x^j \end{displaymath} being the same infinitesimal measure with orientation reversed. \begin{defn} \label{DifferentialnForms}\hypertarget{DifferentialnForms}{} \textbf{([[exterior algebra]] of [[differential n-forms]])} For $k,n \in \mathbb{N}$, the \textbf{smooth [[differential forms]]} on a [[Cartesian space]] $\mathbb{R}^k$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) is the [[exterior algebra]] \begin{displaymath} \Omega^\bullet(\mathbb{R}^k) \coloneqq \wedge^\bullet_{C^\infty(\mathbb{R}^k)} \Omega^1(\mathbb{R}^k) \end{displaymath} over the [[algebra of functions|algebra of]] [[smooth functions]] $C^\infty(\mathbb{R}^k)$ (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}) of the [[module]] $\Omega^1(\mathbb{R}^k)$ of smooth 1-forms. We write $\Omega^n(\mathbb{R}^k)$ for the sub-module of degree $n$ and call its elements the \emph{[[differential n-forms]]}. Explicitly this means that a [[differential n-form]] $\omega \in \Omega^n(\mathbb{R}^k)$ on $\mathbb{R}^k$ is a [[formal linear combination]] over $C^\infty(\mathbb{R}^k)$ (example \ref{AlgebraOfSmoothFunctionsOnCartesianSpaces}) of [[basis]] elements of the form $d x^{i_1} \wedge \cdots \wedge d x^{i_n}$ for $i_1 \lt i_2 \lt \cdots \lt i_n$: \begin{displaymath} \omega = \omega_{i_1, \cdots, i_n} d x^{i_1} \wedge \cdots \wedge d x^{i_n} \,. \end{displaymath} \end{defn} Now all the constructions for [[differential 1-forms]] above extent naturally to [[differential n-forms]]: \begin{defn} \label{deRhamDifferential}\hypertarget{deRhamDifferential}{} \textbf{([[exterior derivative]] or [[de Rham differential]])} For $\mathbb{R}^n$ a [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) the [[de Rham differential]] $d \colon C^\infty(\mathbb{R}^n) \to \Omega^1(\mathbb{R}^n)$ \eqref{deRhamDifferentialOnFunctionsOnCartesianSpace} uniquely extended as a [[derivation]] of degree +1 to the [[exterior algebra]] of [[differential forms]] (def. \ref{DifferentialnForms}) \begin{displaymath} d \;\colon\; \Omega^\bullet(\mathbb{R}^n) \longrightarrow \Omega^\bullet(\mathbb{R}^n) \end{displaymath} meaning that for $\omega_i \in \Omega^{k_i}(\mathbb{R})$ then \begin{displaymath} d(\omega_1 \wedge \omega_2) \;=\; (d \omega_1) \wedge \omega_2 + \omega_1 \wedge d \omega_2 \,. \end{displaymath} In components this simply means that \begin{displaymath} \begin{aligned} d \omega & = d \left(\omega_{i_1 \cdots i_k} d x^{i_1} \wedge \cdots \wedge d x^{i_k}\right) \\ & = \frac{\partial \omega_{i_1 \cdots i_k}}{\partial x^{a}} d x^a \wedge d x^{i_1} \wedge \cdots \wedge d x^{i_k} \end{aligned} \,. \end{displaymath} Since [[partial derivatives]] commute with each other, while differential 1-form anti-commute, this implies that $d$ is nilpotent \begin{displaymath} d^2 = d \circ d = 0 \,. \end{displaymath} We say hence that [[differential forms]] form a \emph{[[cochain complex]]}, the \emph{[[de Rham complex]]} $(\Omega^\bullet(\mathbb{R}^n), d)$. \end{defn} \begin{defn} \label{ContractionOfFormsWithVectorFields}\hypertarget{ContractionOfFormsWithVectorFields}{} \textbf{(contraction of [[differential n-forms]] with [[tangent vector fields]])} The pairing $\iota_v \omega = \omega(v)$ of [[tangent vector fields]] $v$ with [[differential 1-forms]] $\omega$ \eqref{PairingVectorFieldsWithDifferential1Forms} uniquely [[extension|extends]] to the [[exterior algebra]] $\Omega^\bullet(\mathbb{R}^n)$ of [[differential forms]] (def. \ref{DifferentialnForms}) as a [[derivation]] of degree -1 \begin{displaymath} \iota_v \;\colon\; \Omega^{\bullet+1}(\mathbb{R}^n) \longrightarrow \Omega^\bullet(\mathbb{R}^n) \,. \end{displaymath} In particular for $\omega_1, \omega_2 \in \Omega^1(\mathbb{R}^n)$ two [[differential 1-forms]], then \begin{displaymath} \iota_{v} (\omega_1 \wedge \omega_2) \;=\; \omega_1(v) \omega_2 - \omega_2(v) \omega_1 \;\in\; \Omega^1(\mathbb{R}^n) \,. \end{displaymath} \end{defn} \begin{prop} \label{PullbackOfDifferentialForms}\hypertarget{PullbackOfDifferentialForms}{} \textbf{([[pullback of differential forms|pullback of differential n-forms]])} For $f \colon \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$ a [[smooth function]] between [[Cartesian spaces]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) the operationf of [[pullback of differential forms|pullback of differential 1-forms]] of def. \ref{Differential1FormsOnCartesianSpaces} extends as an $C^\infty(\mathbb{R}^k)$-[[associative algebra|algebra]] [[homomorphism]] to the [[exterior algebra]] of [[differential forms]] (def. \ref{DifferentialnForms}), \begin{displaymath} f^\ast \;\colon\; \Omega^\bullet(\mathbb{R}^{n_2}) \longrightarrow \Omega^\bullet(\mathbb{R}^{n_1}) \end{displaymath} given on basis elements by \begin{displaymath} f^* \left( dx^{i_1} \wedge \cdots \wedge dx^{i_n} \right) = \left(f^* dx^{i_1} \wedge \cdots \wedge f^* dx^{i_n} \right) \,. \end{displaymath} This commutes with the [[de Rham differential]] $d$ on both sides (def. \ref{deRhamDifferential}) in that \begin{displaymath} d \circ f^\ast = f^\ast \circ d \phantom{AAAAA} \itexarray{ \Omega^\bullet(X) &\overset{f^\ast}{\longleftarrow}& \Omega^\bullet(Y) \\ \mathllap{d}\downarrow && \downarrow\mathrlap{d} \\ \Omega^\bullet(X) &\underset{f^\ast}{\longleftarrow}& \Omega^\bullet(Y) } \end{displaymath} hence that [[pullback of differential forms]] is a \emph{[[chain map]]} of [[de Rham complexes]]. This is still compatible with [[identity morphisms]] and [[composition]] in that \begin{equation} (id_{\mathbb{R}^n})^\ast = id_{\Omega^1(\mathbb{R}^n)} \phantom{AAAA} (g \circ f)^\ast = f^\ast \circ g^\ast \,. \label{PullbackOfDiffereentialFormsCompatibleWithComposition}\end{equation} Stated more [[category theory|abstractly]], this just means that [[pullback of differential forms|pullback of differential n-forms]] makes the assignment of sets of [[differential n-forms]] to [[Cartesian spaces]] a [[contravariant functor|contravariant]] [[functor]] \begin{displaymath} \Omega^n(-) \;\colon\; CartSp^{op} \longrightarrow Set \,. \end{displaymath} \end{prop} \begin{prop} \label{CartanHomotopyFormula}\hypertarget{CartanHomotopyFormula}{} \textbf{([[Cartan's homotopy formula]])} Let $X$ be a [[Cartesian space]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}), and let $v \in \Gamma(T X)$ be a smooth [[tangent vector field]] (example \ref{TangentVectorFields}). For $t \in \mathbb{R}$ write $\exp(t v) \colon X \overset{\simeq}{\to} X$ for the [[flow]] by [[diffeomorphisms]] along $v$ of parameter length $t$. Then the [[derivative]] with respect to $t$ of the [[pullback of differential forms]] along $\exp(t v)$, hence the [[Lie derivative]] $\mathcal{L}_v \colon \Omega^\bullet(X) \to \Omega^\bullet(X)$, is given by the [[anticommutator]] of the contraction derivation $\iota_v$ (def. \ref{ContractionOfFormsWithVectorFields}) with the [[de Rham differential]] $d$ (def. \ref{deRhamDifferential}): \begin{displaymath} \begin{aligned} \mathcal{L}_v &\coloneqq \frac{d}{d t } \exp(t v)^\ast \omega \vert_{t = 0} \\ & = \iota_v d \omega + d \iota_v \omega \,. \end{aligned} \end{displaymath} \end{prop} Finally we turn to the concept of [[integration of differential forms]] (def. \ref{IntegrationOfDifferentialFormsOverSmoothSingularChainsInCartesianSpaces} below). First we need to say what it is that differential forms may be integrated over: \begin{defn} \label{SingularSimplicesInCartesianSpaces}\hypertarget{SingularSimplicesInCartesianSpaces}{} \textbf{(smooth [[singular simplicial chains]] in [[Cartesian spaces]])} For $n \in \mathbb{N}$, the \emph{standard [[n-simplex]]} in the [[Cartesian space]] $\mathbb{R}^n$ (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) is the [[subset]] \begin{displaymath} \Delta^n \;\coloneqq\; \left\{ (x^i)_{i = 1}^n \;\vert\; 0 \leq x^1 \leq \cdots \leq x^n \right\} \;\subset\; \mathbb{R}^n \,. \end{displaymath} More generally, a \emph{smooth [[singular simplicial complex|singular n-simplex]]} in a [[Cartesian space]] $\mathbb{R}^k$ is a [[smooth function]] (def. \ref{CartesianSpacesAndSmoothFunctionsBetweenThem}) \begin{displaymath} \sigma \;\colon\; \mathbb{R}^n \longrightarrow \mathbb{R}^k \,, \end{displaymath} to be thought of as a smooth extension of its restriction \begin{displaymath} \sigma\vert_{\Delta^n} \;\colon\; \Delta^n \longrightarrow \mathbb{R}^k \,. \end{displaymath} (This is called a \emph{[[singular simplicial complex|singular]]} simplex because there is no condition that $\Sigma$ be an [[embedding]] in any way, in particular $\sigma$ may be a [[constant function]].) A [[singular chain]] in $\mathbb{R}^k$ of [[dimension]] $n$ is a [[formal linear combination]] of singular $n$-simplices in $\mathbb{R}^k$. In particular, given a singular $n+1$-simplex $\sigma$, then its \emph{[[boundary of a simplex|boundary]]} is a [[singular chain]] of singular $n$-simplices $\partial \sigma$. \end{defn} \begin{defn} \label{IntegrationOfDifferentialFormsOverSmoothSingularChainsInCartesianSpaces}\hypertarget{IntegrationOfDifferentialFormsOverSmoothSingularChainsInCartesianSpaces}{} \textbf{([[fiber integration|fiber]]-[[integration of differential forms]]) over smooth [[singular chains]] in [[Cartesian spaces]])} For $n \in \mathbb{N}$ and $\omega \in \Omega^n(\mathbb{R}^n)$ a [[differential n-form]] (def. \ref{DifferentialnForms}), which may be written as \begin{displaymath} \omega = f d x^1 \wedge \cdots d x^n \,, \end{displaymath} then its [[integration of differential forms|integration]] over the standard [[n-simplex]] $\Delta^n \subset \mathbb{R}^n$ (def. \ref{SingularSimplicesInCartesianSpaces}) is the ordinary [[integral]] (e.g. [[Riemann integral]]) \begin{displaymath} \int_{\Delta^n} \omega \;\coloneqq\; \underset{0 \leq x^1 \leq \cdots \leq x^n \leq 1}{\int} f(x^1, \cdots, x^n) \, d x^1 \cdots d x^n \,. \end{displaymath} More generally, for \begin{enumerate}% \item $\omega \in \Omega^n(\mathbb{R}^k)$ a [[differential n-forms]]; \item $C = \underset{i}{\sum} c_i \sigma_i$ a singular $n$-chain (def. \ref{SingularSimplicesInCartesianSpaces}) \end{enumerate} in any [[Cartesian space]] $\mathbb{R}^k$. Then the \emph{[[integration of differential forms|integration]]} of $\omega$ over $x$ is the [[sum]] of the integrations, as above, of the [[pullback of differential forms]] (def. \ref{PullbackOfDifferentialForms}) along all the singular [[n-simplices]] in the chain: \begin{displaymath} \int_C \omega \;\coloneqq\; \underset{i}{\sum} c_i \int_{\Delta^n} (\sigma_i)^\ast \omega \,. \end{displaymath} Finally, for $U$ another Cartesian space, then \emph{[[fiber integration]] of differential forms along $U \times C \to U$} is the linear map \begin{displaymath} \int_C \;\colon\; \Omega^{\bullet + dim(C)}(U \times C) \longrightarrow \Omega^\bullet(U) \end{displaymath} which on differential forms of the form $\omega_U \wedge \omega$ is given by \begin{displaymath} \int_C \omega_U \wedge \omega \;\coloneqq\; (-1)^{\vert \omega_U\vert} \int_C \omega \,. \end{displaymath} \end{defn} \begin{prop} \label{StokesTheorem}\hypertarget{StokesTheorem}{} \textbf{([[Stokes theorem]] for [[fiber integration|fiber]]-[[integration of differential forms]])} For $\Sigma$ a smooth [[singular simplicial chain]] (def. \ref{IntegrationOfDifferentialFormsOverSmoothSingularChainsInCartesianSpaces}) the operation of [[fiber integration|fiber]]-[[integration of differential forms]] along $U \times \Sigma \overset{pr_1}{\longrightarrow} U$ (def. \ref{IntegrationOfDifferentialFormsOverSmoothSingularChainsInCartesianSpaces}) is compatible with the [[exterior derivative]] $d_U$ on $U$ (def. \ref{deRhamDifferential}) in that \begin{displaymath} \begin{aligned} d \int_\Sigma \omega & = (-1)^{dim(\Sigma)} \int_\Sigma d_U \omega \\ & = (-1)^{dim(\Sigma)} \left( \int_\Sigma d \omega - \int_{\partial \Sigma} \omega \right) \end{aligned} \,, \end{displaymath} where $d = d_U + d_\Sigma$ is the [[de Rham differential]] on $U \times \Sigma$ (def. \ref{deRhamDifferential}) and where the second equality is the \emph{[[Stokes theorem]]} along $\Sigma$: \begin{displaymath} \int_\Sigma d_\Sigma \omega = \int_{\partial \Sigma} \omega \,. \end{displaymath} \end{prop} $\,$ This concludes our review of the basics of ([[synthetic differential geometry|synthetic]]) [[differential geometry]] on which the following development of quantum field theory is based. In the \hyperlink{Spacetime}{next chapter} we consider \emph{[[spacetime]]} and \emph{[[spin]]}. \end{document}