\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A-infinity-algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{realizations}{Realizations}\dotfill \pageref*{realizations} \linebreak \noindent\hyperlink{in_chain_complexes}{In chain complexes}\dotfill \pageref*{in_chain_complexes} \linebreak \noindent\hyperlink{rectification}{Rectification}\dotfill \pageref*{rectification} \linebreak \noindent\hyperlink{in_topological_space}{In Topological space}\dotfill \pageref*{in_topological_space} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{rectification_2}{Rectification}\dotfill \pageref*{rectification_2} \linebreak \noindent\hyperlink{in_spectra}{In spectra}\dotfill \pageref*{in_spectra} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{$A_\infty$-algebra} is a [[monoid]] internal to a [[homotopical category]] such that the [[associativity]] law holds not as an equation, but only up to higher [[coherent]] [[homotopy]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} An \textbf{$A_\infty$-algebra} is an [[algebra over an operad]] over an [[A-∞ operad]]. \end{defn} \hypertarget{realizations}{}\subsection*{{Realizations}}\label{realizations} \hypertarget{in_chain_complexes}{}\subsubsection*{{In chain complexes}}\label{in_chain_complexes} Let here $\mathcal{E}$ be the [[category of chain complexes]] $\mathcal{Ch}_\bullet$. Notice that often in the literature this choice of $\mathcal{E}$ is regarded as default and silently assumed. An $A_\infty$-algebra in chain complexes is concretely the following data. A chain $A_\infty$-algebra is the structure of a degree 1 [[coderivation]] \begin{displaymath} D : T^c V \to T^c V \end{displaymath} on the reduced tensor coalgebra $T^c V = \oplus_{n\geq 1} V^{\otimes n}$ (with the standard noncocommutative coproduct, see [[differential graded Hopf algebra]]) over a [[graded vector space]] $V$ such that \begin{displaymath} D^2 = 0 \,. \end{displaymath} Coderivations on free coalgebras are entirely determined by their ``value on cogenerators'', which allows one to decompose $D$ as a sum: \begin{displaymath} D = D_1 + D_2 + D_3 + \cdots \end{displaymath} with each $D_k$ specified entirely by its action \begin{displaymath} D_k : V^{\otimes k} \to V \,. \end{displaymath} which is a map of degree $2-k$ (or can be alternatively understood as a map $D_k : (V[1])^{\otimes k}\to V[1]$ of degree $1$). Then: \begin{itemize}% \item $D_1 : V\to V$ is the \emph{differential} with $D_1^2 = 0$; \item $D_2 : V^{\otimes 2} \to V$ is the \emph{product} in the algebra; \item $D_3 : V^{\otimes 3} \to V$ is the \emph{associator} which measures the failure of $D_2$ to be associative; \item $D_4 : V^{\otimes 4} \to V$ is the \emph{pentagonator} (or so) which measures the failure of $D_3$ to satisfy the pentagon identity; \item and so on. \end{itemize} One can also allow $D_0$, in which case one talks about weak $A_\infty$-algebras, which are less understood. There is a resolution of the operad $\mathrm{Ass}$ of associative algebras (as operad on the category of chain complexes) which is called the $A_\infty$-operad; the algebras over the $A_\infty$-[[A-infinity operad|operad]] are precisely the $A_\infty$-algebras. A \textbf{morphism of $A_\infty$-algebras} $f : A\to B$ is a collection $\lbrace f_n\rbrace_{n\geq 1}$ of maps \begin{displaymath} f_n : (A[1])^{\otimes n}\to B[1] \end{displaymath} of degree $0$ satisfying \begin{displaymath} \sum_{0\leq i+j\leq n} f_{i+j+1}\circ(1^{\otimes i}\otimes D_{n-i-j}\otimes 1^{\otimes j}) = \sum_{i_1+\ldots+i_r=n} D_r\circ (f_{i_1}\otimes\ldots f_{i_r}). \end{displaymath} For example, $f_1\circ D_1 = D_1\circ f_1$. \hypertarget{rectification}{}\paragraph*{{Rectification}}\label{rectification} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Kadeishvili (1980), Merkulov (1999))} If $A$ is a [[dg-algebra]], regarded as a strictly associative $A_\infty$-algebra, its [[chain homology and cohomology|chain cohomology]] $H^\bullet(A)$, regarded as a [[chain complex]] with trivial differentials, naturally carries the structure of an $A_\infty$-algebra, unique up to isomorphism, and is weakly equivalent to $A$ as an $A_\infty$-algebra. \end{theorem} More details are at \emph{[[Kadeishvili's theorem]]}. \begin{remark} \label{}\hypertarget{}{} This theorem provides a large supply of examples of $A_\infty$-algebras: there is a natural $A_\infty$-algebra structure on all cohomologies such as \begin{itemize}% \item [[de Rham cohomology]] \item [[Hochschild cohomology]] \end{itemize} etc. \end{remark} \hypertarget{in_topological_space}{}\subsubsection*{{In Topological space}}\label{in_topological_space} An $A_\infty$-algebra in [[Top]] is also called an \emph{[[A-∞ space]]} . \hypertarget{examples}{}\paragraph*{{Examples}}\label{examples} Every [[loop space]] is canonically an [[A-∞ space]]. (See there for details.) \hypertarget{rectification_2}{}\paragraph*{{Rectification}}\label{rectification_2} \begin{theorem} \label{}\hypertarget{}{} Every $A_\infty$-space is [[weak homotopy equivalence|weakly homotopy equivalent]] to a topological [[monoid]]. \end{theorem} This is a classical result by (\hyperlink{Stasheff}{Stasheff}, \hyperlink{BoardmanVogt}{BoardmanVogt}). It follows also as a special case of the more general result on rectification in a [[model structure on algebras over an operad]] (see there). \hypertarget{in_spectra}{}\subsubsection*{{In spectra}}\label{in_spectra} See [[ring spectrum]] and [[algebra spectrum]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{$A_\infty$-algebra}, [[A-∞-category]] \begin{itemize}% \item [[augmented A-∞ algebra]] \item [[curved A-∞ algebra]] \end{itemize} \item [[A-n algebra]] \item [[E-∞ algebra]] \item [[L-∞ algebra]], . \end{itemize} [[!include k-monoidal table]] [[!include deformation quantization - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} A survey of $A_\infty$-algebras in chain complexes is in \begin{itemize}% \item [[Bernhard Keller]], \emph{A brief introduction to $A_\infty$-algebras} (\href{http://people.math.jussieu.fr/~keller/publ/IntroAinfEdinb.pdf}{pdf}) \end{itemize} Classical articles on $A_\infty$-algebra in topological spaces are \begin{itemize}% \item [[Jim Stasheff]], \emph{Homotopy associativity of H-spaces I} , Trans. Amer. Math. Soc. 108 (1963), p. 275-292. \end{itemize} \begin{itemize}% \item [[Michael Boardman]] and [[Rainer Vogt]], \emph{Homotopy invariant algebraic structures on topological spaces} , Lect. Notes Math. 347 (1973). \end{itemize} A brief survey is in section 1.8 of \begin{itemize}% \item [[Martin Markl]], Steve Shnider, [[Jim Stasheff|James D. Stasheff]], \emph{Operads in algebra, topology and physics}, Math. Surveys and Monographs \textbf{96}, Amer. Math. Soc. 2002. \end{itemize} The 1986 thesis of [[Alain Prouté]] explores the possibility of obtaining analogues of [[minimal model]]s for $A_\infty$ algebras. It was published in TAC much later. \begin{itemize}% \item [[Alain Prouté]], \emph{Alg\`e{}bres diff\'e{}rentielles fortement homotopiquement associatives ($A_\infty$-alg\`e{}bres)}, thesis, available as \href{http://www.logique.jussieu.fr/~alp/these_A_Proute-TAC.pdf}{Reprints in Theory and Applications of Categories, No. 21, 2011, pp. 1--99} \end{itemize} [[!redirects A-infinity-algebras]] [[!redirects A-infinity algebra]] [[!redirects A-infinity algebras]] [[!redirects A-∞ algebra]] [[!redirects A-∞ algebras]] [[!redirects A? algebra]] [[!redirects A? algebras]] [[!redirects A-∞-algebra]] [[!redirects A-∞-algebras]] \end{document}