\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{A-infinity-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{ordinary_linear_categories}{Ordinary linear $A_\infty$-categories}\dotfill \pageref*{ordinary_linear_categories} \linebreak \noindent\hyperlink{examples_and_remarks}{Examples (and remarks)}\dotfill \pageref*{examples_and_remarks} \linebreak \noindent\hyperlink{more_general_categories}{More general $A_\infty$-categories}\dotfill \pageref*{more_general_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{for_categories_in_the_sense_of_homological_algebra}{For $A_\infty$-categories in the sense of homological algebra}\dotfill \pageref*{for_categories_in_the_sense_of_homological_algebra} \linebreak \noindent\hyperlink{for_categories_in_the_wider_sense}{For $A_\infty$-categories in the wider sense}\dotfill \pageref*{for_categories_in_the_wider_sense} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{$A_\infty$-category} is a kind of [[category]] in which the associativity condition on the [[composition]] of [[morphism]]s is relaxed ``up to higher coherent homotopy''. The ``A'' is for Associative and the ``${}_\infty$'' indicates that associativity is relaxed up to higher homotopies without bound on the degree of the homotopies. In the most widespread use of the word $A_\infty$-categories are \emph{linear} categories in that they have [[hom-object]]s that are [[chain complex]]es. These are really models/presentations for [[stable (∞,1)-category|stable (∞,1)-categories]]. If the composition in the linear $A_\infty$-category does happen to be strictly associative it becomes the same as a [[dg-category]]. In fact, every linear $A_\infty$-category is $A_\infty$-equivalent to a [[dg-category]]. In this way, we have that $A_\infty$-categories related to [[dg-category|dg-categories]] as models for [[stable (∞,1)-category|stable (∞,1)-categories]] in roughly the same way as [[quasi-category|quasi-categories]] relate to [[simplicially enriched category|simplicially enriched categories]] as models for [[(∞,1)-category|(∞,1)-categories]]: the former is the general incarnation, while the latter is a [[semi-strict infinity-category|semi-strictified]] version. \hypertarget{ordinary_linear_categories}{}\subsubsection*{{Ordinary linear $A_\infty$-categories}}\label{ordinary_linear_categories} In what is strictly speaking a restrictive sense -- which is however widely and conventionally understood in [[homological algebra]] as the standard notion of $A_\infty$-category (see references below) -- the [[hom-space]]s of an $A_\infty$-category are taken to be linear spaces, i.e. [[module]]s over some [[ring]] or [[field]], and in fact [[chain complex]]es of such modules. Therefore an $A_\infty$-category in this standard sense of [[homological algebra]] is a category which is in some way [[homotopical enrichment|homotopically enriched]] over a [[category of chain complexes]] $Ch$. Since a category which is [[enriched category|enriched]] in the ordinary sense of [[enriched category theory]] is a [[dg-category]], there is a close relation between $A_\infty$-categories and [[dg-category|dg-categories]]. $A_\infty$-categories in this linear sense are a [[horizontal categorification]] of the notion of [[A-infinity-algebra]]. As such they are to [[A-infinity-algebra]]s as [[Lie infinity-algebroid]]s are to [[L-infinity-algebra]]s. For this point of view see \hyperlink{KonsevichSoibelman08}{Konsevich-Soibelman 08}. \begin{defn} \label{}\hypertarget{}{} A category $C$ such that \begin{enumerate}% \item for all $X,Y$ in $Ob(C)$ the [[hom-set|Hom-set]]s $Hom_C(X,Y)$ are finite dimensional [[chain complex]]es of $\mathbf{Z}$-graded modules \item for all objects $X_1,...,X_n$ in $Ob(C)$ there is a family of linear composition maps (the higher compositions) $m_n : Hom_C(X_0,X_1) \otimes Hom_C(X_1,X_2) \otimes \cdots \otimes Hom_C(X_{n-1},X_n) \to Hom_C(X_0,X_n)$ of degree $n-2$ (homological grading convention is used) for $n\geq1$ \item $m_1$ is the differential on the chain complex $Hom_C(X,Y)$ \item $m_n$ satisfy the quadratic $A_\infty$-associativity equation for all $n\geq0$. \end{enumerate} \end{defn} $m_1$ and $m_2$ will be [[chain complex|chain map]]s but the compositions $m_i$ of higher order are not chain maps, nevertheless they are [[Massey product]]s. The framework of dg-categories and dg-functors is too narrow for many problems, and it is preferable to consider the wider class of $A_\infty$-categories and $A_\infty$-functors. Many features of $A_\infty$-categories and $A_\infty$-functors come from the fact that they form a symmetric closed [[multicategory]], which is revealed in the language of [[comonad|comonads]]. From a higher dimensional perspective $A_\infty$-categories are weak $\omega$-categories with all morphisms invertible. $A_\infty$-categories can also be viewed as noncommutative formal dg-manifolds with a closed marked subscheme of objects. \hypertarget{examples_and_remarks}{}\subsubsection*{{Examples (and remarks)}}\label{examples_and_remarks} \begin{itemize}% \item Every [[dg-category]] may be regarded as a special case when there are no higher maps (trivial homotopies) of an $A_\infty$-category. \item Every $A_\infty$-category is $A_\infty$-equivalent to a [[dg-category]]. \begin{itemize}% \item This is a corollary of the $A_\infty$-categorical [[Yoneda lemma]]. \item beware that this statement does not imply that the notion of $A_\infty$-categories is obsolete (see section 1.8 in Bespalov et al.): in practice it is often easier to work with a given naturally arising $A_\infty$-category than constructing its equivalent [[dg-category]] \begin{itemize}% \item for instance when dealing with a [[Fukaya A-infinity-category|Fukaya]] $A_\infty$-category; \item or when dealing with various constructions on dg-categories, for instance certain quotients,that naturally yield directly $A_\infty$-categories instead of dg-categories. \end{itemize} \end{itemize} \item The [[path space ]] of a topological space $X$ \item The [[Fukaya category]] $Fuk(X)$ of a topological space $X$ -- a [[Calabi-Yau A-∞ category]] \item $A_\infty$-[[A-infinity-algebra|algebras]] are the $A_\infty$-categories with one object. \begin{itemize}% \item For example, the delooping $\mathbf{B}\Omega{X}$ of [[loop space]] $\Omega{X}$ of a topological space $X$ \end{itemize} \end{itemize} \hypertarget{more_general_categories}{}\subsubsection*{{More general $A_\infty$-categories}}\label{more_general_categories} In the widest sense, $A_\infty$-category may be used as a term for a category in which the [[composition]] operation constitutes an algebra over an [[operad]] which resolves in some sense the associative operad $Ass$. One should be aware, though, that this use of the term is not understood by default in the large body of literature concerned with the above linear notion. A less general but non-linear definition is fairly straight forward in any category in which there is a notion of \emph{homotopy} with the usual properties. \begin{udefn} An $A_\infty$-category is a [[category over an operad|category over]] the $A_\infty$-[[A-infinity operad|operad]]: e.g. the free resolution in the context of dg-operads of the linear associative operad. \end{udefn} \begin{example} \label{}\hypertarget{}{} \begin{itemize}% \item [[Trimble n-category|Trimble n-categories]]; \item also the classical notion of [[bicategory]] can be interpreted as an $A_\infty$-category in [[Cat]] for a suitable Cat-operad. \end{itemize} \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[A-∞ space]], [[associahedron]] \item [[A-∞ algebra]] \item [[stable (∞,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{for_categories_in_the_sense_of_homological_algebra}{}\subsubsection*{{For $A_\infty$-categories in the sense of homological algebra}}\label{for_categories_in_the_sense_of_homological_algebra} For a short and precise introduction see \begin{itemize}% \item B. Keller, \emph{Introduction to $A_\infty$-algebras and modules} (, ) and Addendum (), Homology, Homotopy and Applications 3 (2001), 1-35; \item B. Keller, \emph{$A_\infty$ algebras, modules and functor categories}, (, ). \end{itemize} and for a [[Fukaya category]]-oriented introduction see chapter 1 in \begin{itemize}% \item P. Seidel, \emph{Fukaya category and Picard-Lefschetz theory}, \end{itemize} A very detailed treatment of $A_\infty$-categories is a recent book \begin{itemize}% \item Yu. Bespalov, [[Volodymyr Lyubashenko]], O. Manzyuk, \emph{Pretriangulated $A_\infty$-categories}, Proceedings of the Institute of Mathematics of NAS of Ukraine, vol. 76, Institute of Mathematics of NAS of Ukraine, Kyiv, 2008, 598 (\href{http://www.math.ksu.edu/~lub/cmcMonad.gz}{ps.gz}) \begin{itemize}% \item notice: the ps.gz file has different page numbers than the printed version, but the numbering of sections and formulae is final. Errata to published version are \href{http://www.math.ksu.edu/~lub/cmcMoCor.pdf}{here}. \end{itemize} \item Oleksandr Manzyk, \emph{A-infinity-bimodules and Serre A-infinity-functors}, dissertation \href{https://kluedo.ub.uni-kl.de/files/1910/dissertation.pdf}{pdf}, \href{https://kluedo.ub.uni-kl.de/files/1910/dissertation.djvu}{djvu}; \emph{Serre $A_\infty$ functors}, talk at Categories in geometry and math. physics, Split 2007, slides, \href{http://www.irb.hr/korisnici/zskoda/manzyukslides.pdf}{pdf}, work with [[Volodymyr Lyubashenko]] \end{itemize} The relation of $A_\infty$-categories to [[differential graded algebra]]s is emphasized in the introduction of \begin{itemize}% \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry. I}, in [[Anton Kapustin]], [[Maximilian Kreuzer]], [[Karl-Georg Schlesinger]] (eds.) \emph{Homological mirror symmetry -- New developments and perspectives}, Springer 2008 (\href{http://arxiv.org/abs/math/0606241}{arXiv:math/0606241}, \href{https://www.springer.com/de/book/9783540680291}{doi:10.1007/978-3-540-68030-7}) \end{itemize} which mostly discusses just [[A-infinity-algebra]]s, but points out a generalizations to $A_\infty$-categories, see the overview on \href{http://arxiv.org/PS_cache/math/pdf/0606/0606241v2.pdf#page=3}{p. 3} Essentially the authors say that an $A_\infty$-category should be a non(-graded-)commutative [[dg-manifold]]/[[L-infinity-algebroid]]. More [[category theory]] and [[homotopy theory]] of $A_\infty$-categories is discussed in \begin{itemize}% \item Kenji Lef\`e{}vre-Hasegawa, \emph{Sur les A-infini cat\'e{}gories} (\href{http://arxiv.org/abs/math/0310337}{arXiv:math/0310337}) \item [[Bruno Valette]], \emph{Homotopy theory of homotopy algebras} (\href{http://math.unice.fr/~brunov/HomotopyTheory.pdf}{pdf}) \end{itemize} \hypertarget{for_categories_in_the_wider_sense}{}\subsubsection*{{For $A_\infty$-categories in the wider sense}}\label{for_categories_in_the_wider_sense} If one understands $A_\infty$-category as ``operadically defined higher category'', then relevant references would include: \begin{itemize}% \item Eugenia Cheng, \emph{Comparing operadic definitions of $n$-category} (\href{http://arxiv.org/abs/0809.2070}{arXiv}) \end{itemize} With operads modeled by [[dendroidal sets]], [[n-categories]] for low $n$ viewed as objects with an $A-\infty$-composition operation are discussed in section 5 of \begin{itemize}% \item Andor Lucacs, \emph{Cyclic Operads, Dendroidal Structures, Higher Categories} (\href{http://igitur-archive.library.uu.nl/dissertations/2011-0211-200314/lukacs.pdf}{pdf}) \end{itemize} and \begin{itemize}% \item Andor Lucacs, \emph{Dendroidal weak 2-categories} (\href{http://de.arxiv.org/abs/1304.4278}{arXiv:1304.4278}) \end{itemize} See also the references at \emph{[[model structure on algebras over an operad]]}. [[!redirects A-infinity category]] [[!redirects A-infinity categories]] [[!redirects A-∞ category]] [[!redirects A-∞ categories]] [[!redirects A? category]] [[!redirects A? categories]] [[!redirects A∞-category]] [[!redirects A∞-categories]] [[!redirects A-∞-category]] [[!redirects A-∞-categories]] \end{document}