\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ABJM theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{adscft_duality}{AdS/CFT duality}\dotfill \pageref*{adscft_duality} \linebreak \noindent\hyperlink{boundary_conditions}{Boundary conditions}\dotfill \pageref*{boundary_conditions} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{ABJM model} (\hyperlink{ABJM08}{ABJM 08}) is an $\mathcal{N} = 6$ [[3d superconformal gauge field theory]] involving [[Chern-Simons theory]] with [[gauge group]] [[special unitary group|SU(N)]] and [[minimal coupling|coupled]] to [[matter fields]]. For [[level (Chern-Simons theory)|Chern-Simons level]] $k$ it is supposed to describe the [[worldvolume]] theory of $N$ coincident [[black brane|black]] [[M2-branes]] at an $\mathbb{Z}/k$-[[cyclic group]] [[orbifold]] [[singularity]] with [[near-horizon geometry]] $AdS_4 \times S^7/(\mathbb{Z}/k)$ (see at \emph{\href{M2-brane#AsABlackBrane}{M2-branes -- As a black brane}}). [[!include superconformal symmetry -- table]] For $k = 2$ the supersymmetry of the ABJM model increases to $\mathcal{N} = 8$. For $k = 2$ and $N = 2$ the ABJM model reduces to the [[BLG model]] (\hyperlink{ABJM08}{ABJM 08, section 2.6}). Due to the matter coupling, the ABJM model is no longer a [[topological field theory]] as pure Chern-Simons is, but it is still a [[conformal field theory]]. As such it is thought to correspond under [[AdS-CFT]] duality to [[M-theory]] on [[anti-de Sitter spacetime|AdS4]] $\times$ [[7-sphere|S7]]/$\mathbb{Z}/k$ (see also \hyperlink{MFFGME09}{MFFGME 09}). Notice that the worldvolume $SU(N)$ gauge group enhancement at an $\mathbb{Z}_k$-[[ADE singularity]] is akin to the [[enhanced gauge symmetry|gauge symmetry enhancement]] of the [[effective field theory]] for [[M-theory on G2-manifolds]] at the same kind of singularities (see at \emph{\href{M-theory+on+G2-manifolds#EnhancedGaugeGroups}{M-theory on G2-manifolds -- Nonabelian gauge groups}}). More generally, classification of the [[near horizon geometry]] of smooth (i.e. non-[[orbifold]]) $\geq \tfrac{1}{2}$ [[BPS state|BPS]] [[black brane|black]] [[M2-brane]]-solutions of the [[equations of motion]] of [[11-dimensional supergravity]] shows that these are the [[Cartesian product]] $AdS_4 \times (S^7/G)$ of 4-[[dimension|dimensional]] [[anti de Sitter spacetime]] with a 7-[[dimension|dimensional]] [[spherical space form]] $S^7/{\widehat{G}}$ with [[spin structure]] and $N \geq 4$, for $\widehat{G}$ a [[finite subgroup of SU(2)]] (\hyperlink{MFFGME09}{MFFGME 09}, see \href{spherical+space+form#7DSphericalSpaceFormsWithSpinStructure}{here}). [[!include 7d spherical space forms -- table]] \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{adscft_duality}{}\subsubsection*{{AdS/CFT duality}}\label{adscft_duality} Under [[holographic duality]] supposed to be related to [[11-dimensional supergravity|M-theory]] on $AdS_4 \times S^7 / \mathbb{Z}_k$. \hypertarget{boundary_conditions}{}\subsubsection*{{Boundary conditions}}\label{boundary_conditions} Discussion of [[boundary conditions]] of the BLG model, leading to [[brane intersection]] with [[M-wave]], [[M5-brane]] and [[MO9-brane]] is in (\hyperlink{ChuSmith09}{Chu-Smith 09}, \hyperlink{BPST09}{BPST 09}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[BLG model]] \item [[membrane matrix model]] \end{itemize} [[!include superconformal symmetry -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The original article on the $N=6$-case is \begin{itemize}% \item [[Ofer Aharony]], [[Oren Bergman]], [[Daniel Jafferis]], [[Juan Maldacena]], \emph{$N=6$ superconformal Chern-Simons-matter theories, M2-branes and their gravity duals}, JHEP 0810:091,2008, \href{http://iopscience.iop.org/article/10.1088/1126-6708/2008/10/091/meta;jsessionid=FCE6764D4E19F3038C9530E50B057A56.c3.iopscience.cld.iop.org}{DOI:10.1088/1126-6708/2008/10/091} (\href{http://arxiv.org/abs/0806.1218}{arXiv:0806.1218}) \end{itemize} and for [[discrete torsion]] in the [[supergravity C-field]] in \begin{itemize}% \item [[Ofer Aharony]], [[Oren Bergman]], [[Daniel Jafferis]], \emph{Fractional M2-branes}, JHEP 0811:043, 2008 (\href{https://arxiv.org/abs/0807.4924}{arXiv:0807.4924}) (on [[fractional M2-brane|fractional M2-branes]]) \end{itemize} inspired by the $N=8$-case of the [[BLG model]] \begin{itemize}% \item [[Jonathan Bagger]], [[Neil Lambert]], \emph{Modeling Multiple M2's}, Phys. Rev. D75, 045020 (2007). (\href{http://arxiv.org/abs/hep-th/0611108}{hep-th/0611108}). \item [[Jonathan Bagger]], [[Neil Lambert]], Phys. Rev. D77, 065008 (2008). (\href{http://arXiv.org/abs/0711.0955}{arXiv:0711.0955}). \end{itemize} with precursor considerations in \begin{itemize}% \item [[John Schwarz]], \emph{Superconformal Chern-Simons Theories} (\href{https://arxiv.org/abs/hep-th/0411077}{arXiv:arXiv:hep-th/0411077} \end{itemize} The $N=5$-case is discussed in \begin{itemize}% \item Kazuo Hosomichi, Ki-Myeong Lee, Sangmin Lee, Sungjay Lee, Jaemo Park, \emph{$N=5,6$ Superconformal Chern-Simons Theories and M2-branes on Orbifolds}, JHEP 0809:002, 2008 (\href{https://arxiv.org/abs/0806.4977}{arXiv:0806.4977}) \item [[Eric Bergshoeff]], [[Olaf Hohm]], Diederik Roest, [[Henning Samtleben]], [[Ergin Sezgin]], \emph{The Superconformal Gaugings in Three Dimensions}, JHEP0809:101, 2008 (\href{https://arxiv.org/abs/0807.2841}{arXiv:0807.2841}) \item [[Ofer Aharony]], [[Oren Bergman]], [[Daniel Jafferis]], \emph{Fractional M2-branes}, JHEP 0811:043, 2008 (\href{https://arxiv.org/abs/0807.4924}{arXiv:0807.4924}) \end{itemize} The $N=4$-case is discussed in \begin{itemize}% \item Kazuo Hosomichi, Ki-Myeong Lee, Sangmin Lee, Sungjay Lee, Jaemo Park, \emph{N=4 Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets}, JHEP 0807:091,2008 (\href{https://arxiv.org/abs/0805.3662}{arXiv:0805.3662}) \item Fa-Min Chen, Yong-Shi Wu, \emph{Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories}, Phys.Rev.D82:106012, 2010 (\href{https://arxiv.org/abs/1007.5157}{arXiv:1007.5157}) \end{itemize} More on the role of [[discrete torsion]] in the [[supergravity C-field]] is in \begin{itemize}% \item [[Mauricio Romo]], \emph{Aspects of ABJM orbifolds with discrete torsion}, J. High Energ. Phys. (2011) 2011 (\href{https://arxiv.org/abs/1011.4733}{arXiv:1011.4733}) \end{itemize} Discussion of [[boundary conditions]] leading to [[brane intersection]] laws with the [[M-wave]], [[black brane|black]] [[M5-brane]] and [[MO9]] is in \begin{itemize}% \item [[Chong-Sun Chu]], Douglas J. Smith, \emph{Multiple Self-Dual Strings on M5-Branes}, JHEP 1001:001, 2010 (\href{https://arxiv.org/abs/0909.2333}{arXiv:0909.2333}) \item [[David Berman]], Malcolm J. Perry, [[Ergin Sezgin]], Daniel C. Thompson, \emph{Boundary Conditions for Interacting Membranes}, JHEP 1004:025, 2010 (\href{https://arxiv.org/abs/0912.3504}{arXiv:0912.3504}) \end{itemize} Review includes \begin{itemize}% \item [[Igor Klebanov]], Giuseppe Torri, \emph{M2-branes and AdS/CFT}, Int.J.Mod.Phys.A25:332-350, 2010 (\href{https://arxiv.org/abs/0909.1580}{arXiv;0909.1580}) \item Neil B. Copland, \emph{Introductory Lectures on Multiple Membranes} (\href{https://arxiv.org/abs/1012.0459}{arXiv:1012.0459}) \item [[Jonathan Bagger]], [[Neil Lambert]], [[Sunil Mukhi]], [[Constantinos Papageorgakis]], \emph{Multiple Membranes in M-theory}, Physics Reports, Volume 527, Issue 1, 2013 (\href{https://arxiv.org/abs/1203.3546}{arXiv:1203.3546}, \href{https://doi.org/10.1016/j.physrep.2013.01.006}{doi:10.1016/j.physrep.2013.01.006}) \item [[Neil Lambert]], \emph{M-Branes: Lessons from M2’s and Hopes for M5’s}, talk at \emph{\href{http://www.maths.dur.ac.uk/lms/109/index.html}{Higher Structures in M-Theory, Durham, August 2018}} (\href{http://www.maths.dur.ac.uk/lms/109/talks/1877lambert.pdf}{pdf slides}, \href{http://www.maths.dur.ac.uk/lms/109/movies/1877lamb.mp4}{video recording}) \end{itemize} Discussion of [[Montonen-Olive duality]] in [[D=4 super Yang-Mills theory]] via [[ABJM-model]] as [[D3-brane]] model after [[double dimensional reduction]] followed by [[T-duality]]: \begin{itemize}% \item [[Koji Hashimoto]], Ta-Sheng Tai, Seiji Terashima, \emph{Toward a Proof of Montonen-Olive Duality via Multiple M2-branes}, JHEP 0904:025, 2009 (\href{https://arxiv.org/abs/0809.2137}{arxiv:0809.2137}) \end{itemize} Discussion of extension to [[boundary field theory]] (describing [[M2-branes]] ending on [[M5-branes]]) includes \begin{itemize}% \item [[David Berman]], Daniel Thompson, \emph{Membranes with a boundary}, Nucl.Phys.B820:503-533,2009 (\href{http://arxiv.org/abs/0904.0241}{arXiv:0904.0241}) \end{itemize} A kind of [[double dimensional reduction]] of the ABJM model to something related to [[type II superstrings]] and [[D1-branes]] is discussed in \begin{itemize}% \item [[Horatiu Nastase]], Constantinos Papageorgakis, \emph{Dimensional reduction of the ABJM model}, JHEP 1103:094,2011 (\href{http://arxiv.org/abs/1010.3808}{arXiv:1010.3808}) \end{itemize} Discussion of the ABJM model in [[Horava-Witten theory]] and reducing to [[heterotic strings]] is in \begin{itemize}% \item [[Neil Lambert]], \emph{Heterotic M2-branes} (\href{http://arxiv.org/abs/1507.07931}{arXiv:1507.07931}) \end{itemize} Discussion of the model as a [[higher gauge theory]] (due to its coupling to the [[supergravity C-field]]) is in \begin{itemize}% \item Sam Palmer, [[Christian Saemann]], section 2 of \emph{M-brane Models from Non-Abelian Gerbes}, JHEP 1207:010, 2012 (\href{http://arxiv.org/abs/1203.5757}{arXiv:1203.5757}) \item Sam Palmer, [[Christian Saemann]], \emph{The ABJM Model is a Higher Gauge Theory}, IJGMMP 11 (2014) 1450075 (\href{http://arxiv.org/abs/1311.1997}{arXiv:1311.1997}) \end{itemize} Classification of the possible [[superpotentials]] via [[representation theory]] is due to \begin{itemize}% \item Paul de Medeiros, [[José Figueroa-O'Farrill]], [[Elena Méndez-Escobar]], \emph{Superpotentials for superconformal Chern-Simons theories from representation theory}, J. Phys. A 42:485204,2009 (\href{http://arxiv.org/abs/0908.2125}{arXiv:0908.2125}) \end{itemize} and derived from this a classification of the possible [[orbifold|orbifolding]] (see at \emph{[[spherical space form]]: \href{spherical+space+form#7DSphericalSpaceFormsWithSpinStructure}{7d with spin structure}}) is in \begin{itemize}% \item Paul de Medeiros, [[José Figueroa-O'Farrill]], [[Sunil Gadhia]], [[Elena Méndez-Escobar]], \emph{Half-BPS quotients in M-theory: ADE with a twist}, JHEP 0910:038,2009 (\href{http://arxiv.org/abs/0909.0163}{arXiv:0909.0163}, \href{http://www.maths.ed.ac.uk/~jmf/CV/Seminars/YRM2010.pdf}{pdf slides}) \item Paul de Medeiros, [[José Figueroa-O'Farrill]], \emph{Half-BPS M2-brane orbifolds}, Adv. Theor. Math. Phys. Volume 16, Number 5 (2012), 1349-1408. (\href{http://arxiv.org/abs/1007.4761}{arXiv:1007.4761}, \href{https://projecteuclid.org/euclid.atmp/1408561553}{Euclid}) \item [[José Figueroa-O'Farrill]], \emph{M2-branes, ADE and Lie superalgebras}, talk at IPMU 2009 (\href{http://www.maths.ed.ac.uk/~jmf/CV/Seminars/Hongo.pdf}{pdf}) \end{itemize} Discussion via the [[conformal bootstrap]]: \begin{itemize}% \item Nathan B. Agmon, Shai M. Chester, Silviu S. Pufu, \emph{The M-theory Archipelago} (\href{https://arxiv.org/abs/1907.13222}{arXiv:1907.13222}) \end{itemize} See also \begin{itemize}% \item Nadav Drukker, [[Marcos Marino]], Pavel Putrov, \emph{From weak to strong coupling in ABJM theory} (\href{http://arxiv.org/abs/1007.3837}{arXiv:1007.3837}) \item Shai M. Chester, Silviu S. Pufu, Xi Yin, \emph{The M-Theory S-Matrix From ABJM: Beyond 11D Supergravity} (\href{https://arxiv.org/abs/1804.00949}{arXiv:1804.00949}) \end{itemize} Computation of [[black hole entropy]] in 4d via [[AdS4-CFT3 duality]] from [[holographic entanglement entropy]] in the ABJM theory for the [[M2-brane]] is discussed in \begin{itemize}% \item Jun Nian, Xinyu Zhang, \emph{Entanglement Entropy of ABJM Theory and Entropy of Topological Black Hole} (\href{https://arxiv.org/abs/1705.01896}{arXiv:1705.01896}) \end{itemize} Discussion of [[higher curvature corrections]] in the abelian case: \begin{itemize}% \item Shin Sasaki, \emph{On Non-linear Action for Gauged M2-brane}, JHEP 1002:039, 2010 (\href{https://arxiv.org/abs/0912.0903}{arxiv:0912.0903}) \end{itemize} [[!redirects ABJM model]] [[!redirects ABJM-model]] [[!redirects D=3 SCFT]] \end{document}