\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ADE classification} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{ViaSuperYangMillsTheory}{Via $N=2$ super Yang-Mills theory}\dotfill \pageref*{ViaSuperYangMillsTheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_surveys}{General Surveys}\dotfill \pageref*{general_surveys} \linebreak \noindent\hyperlink{in_string_theory}{In string theory}\dotfill \pageref*{in_string_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A long list of mathematical structures happens to have a classification that is in [[bijection]] with the [[simply laced Dynkin diagrams]] of types A, D and E (but excluding type B and C), for instance \begin{itemize}% \item [[Platonic solids]] \item [[finite group|finite]] [[subgroups]] of the [[special orthogonal group]] $SO(3)$ and of the [[special unitary group]] $SU(2)$ (see at [[classification of finite rotation groups]]) (\hyperlink{Milnor57}{Milnor 57}, see e.g. \hyperlink{Keenan03}{Keenan 03, theorem 4}) \item [[simply laced Dynkin diagrams]] (their [[simple Lie groups]]) \end{itemize} $\backslash$begin\{imagefromfile\} ``file\_name'': ``ADEDynkin.jpg'', ``width'': 490 $\backslash$end\{imagefromfile\} \begin{itemize}% \item connected [[quivers]] with a [[finite number]] of [[indecomposable object|indecomposable]] [[quiver representations]] over an [[algebraically closed field]] ([[Gabriel's theorem]]) \item 7d [[spherical space forms]] with [[spin structure]] carrying $N \geq 4$ [[Killing vectors]] (see at \href{spherical+space+form#7DSphericalSpaceFormsWithSpinStructure}{spherical space form -- 7d with spin structure}) equivalently: [[near horizon geometries]] of smooth (i.e. non-[[orbifold]]) $\geq \tfrac{1}{2}$ [[BPS state|BPS]] [[black brane|black]] [[M2-brane]]-solutions of the [[equations of motion]] of [[11-dimensional supergravity]] This is due to \hyperlink{MFFGME09}{MFFGME 09}. \end{itemize} [[!include 7d spherical space forms -- table]] \begin{itemize}% \item [[du Val singularities]] (see [[ADE singularity]]) \item [[singularities]] of [[elliptic fibrations]] (see there are \emph{\href{elliptic+fibration#ClassificationOfSingularFibers}{classification of singular fibers}}) \item certain 4d [[ALE spaces]] (\hyperlink{Kronheimer89}{Kronheimer 89}) \item certain [[2d CFTs]] \item certain [[6d (2,0)-supersymmetric QFT|6d CFTs]] \item intersection diagrams of vanishing 2-cycles in [[K3]]s (e.g. \hyperlink{BBS07}{BBS 07, p.423}) \end{itemize} and many more. [[!include ADE -- table]] The obvious question for what might be the conceptual origin of this joint classification is attributed to (\hyperlink{Arnold76}{Arnold 76}). Starting with (\hyperlink{DouglasMoore96}{Douglas-Moore 96}) is the observation that many of these structures are naturally aspects of the description of [[string theory]] [[KK-compactification|KK-compactified]] on \emph{[[orbifolds]] with [[ADE singularities]]} of the form $\mathbb{C}^n \sslash \Gamma$ for $\Gamma$ a [[finite group|finite]] [[subgroup]] of $SL_2(\mathbb{C})$. \hypertarget{ViaSuperYangMillsTheory}{}\subsection*{{Via $N=2$ super Yang-Mills theory}}\label{ViaSuperYangMillsTheory} Various seemingly unrelated structures in mathematics fall into an ``ADE classification''. Notably [[finite group|finite]] [[subgroups]] of [[special unitary group|SU(2)]] and [[compact Lie group|compact]] [[simple Lie groups]] do. The way this works usually is that one tries to classify these structures somehow, and ends up finding that the classification is governed by the combinatorics of [[Dynkin diagrams]] (see also \emph{[[McKay correspondence]]}). While that does explain a bit, it seems the statement that both the [[icosahedral group]] and the Lie group [[E8]] are related to the same [[Dynkin diagram]] somehow is still more a question than an answer. Why is that so? The first key insight is due to \href{ADE+singularity#Kronheimer89a}{Kronheimer 89}. He showed that the (resolutions of) the [[orbifold]] quotients $\mathbb{C}^2/\Gamma$ for finite subgroups $\Gamma$ of $SU(2)$ are precisely the generic form of the [[gauge group|gauge]] [[orbits]] of the [[direct product group]] of $U(n_i)$s acting in the evident way on the [[direct sum]] of $Hom(\mathbb{C}^{n_i}, \mathbb{C}^{n_j})$-s, where $i$ and $j$ range over the vertices of the [[Dynkin diagram]], and $(i,j)$ over its edges. This becomes more illuminating when interpreted in terms of [[gauge theory]]: in a [[quiver gauge theory]] the [[gauge group]] is a [[direct product group]] of $U(n_i)$ factors associated with vertices of a [[quiver]], and the [[particles]] which are [[charged particle|charged]] under this gauge group arrange, as a [[linear representation]], into a [[direct sum]] of $Hom(\mathbb{C}^{n_i}, \mathbb{C}^{n_j})$-s, for each edge of the quiver. Pick one such particle, and follow it around as the gauge group transforms it. The space swept out is its gauge [[orbit]], and \hyperlink{Kronheimer89}{Kronheimer 89} says that if the quiver is a Dynkin diagram, then this gauge orbit looks like $\mathbb{C}^2/\Gamma$. On the other extreme, gauge theories are of interest whose gauge group is not a big direct product, but is a [[simple Lie group]], such as [[special unitary group|SU(N)]] or [[E8]]. The mechanism that relates the two classes of examples is [[spontaneous symmetry breaking]] (``[[Higgs field|Higgsing]]''): the ground state energy of the field theory may happen to be achieved by putting the fields at any one point in a higher dimensional space of field configurations, acted on by the gauge group, and fixing any one such point ``spontaneously'' singles out the corresponding [[stabilizer subgroup]]. Now here is the final ingredient: it is [[N=2 D=4 super Yang-Mills theory]] (``[[Seiberg-Witten theory]]'') which have a potential that is such that its [[vacua]] break a simple gauge group such as $SU(N)$ down to a Dynkin diagram [[quiver gauge theory]]. One place where this is reviewed, physics style, is in \href{N=2+D=4+super+Yang-Mills+theory#Albertsson03}{Albertsson 03, section 2.3.4}. More precisely, these theories have two different kinds of vacua, those on the ``[[Coulomb branch]]'' and those on the ``[[Higgs branch]]'' depending on whether the scalars of the ``[[vector multiplets]]'' (the gauge field sector) or of the ``[[hypermultiplet]]'' (the matter field sector) vanish. The statement above is for the Higgs branch, but the Coulomb branch is supposed to behave ``dually''. So that then finally is the relation, in the ADE classification, between the simple Lie groups and the finite subgroups of SU(2): start with an N=2 super Yang Mills theory with gauge group a simple Lie group. Let it spontaneously find its vacuum and consider the orbit space of the remaining spontaneously broken symmetry group. That is (a resolution of) the orbifold quotient of $\mathbb{C}^2$ by a discrete subgroup of $SU(2)$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[McKay correspondence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_surveys}{}\subsubsection*{{General Surveys}}\label{general_surveys} \begin{itemize}% \item [[Vladimir Arnold]], \emph{Problems in present day mathematics}, (1976) in Felix E. Browder, \emph{Mathematical developments arising from Hilbert problems}, Proceedings of symposia in pure mathematics 28, American Mathematical Society, p. 46, \emph{Problem VIII. The A-D-E classifications} (V. Arnold). \end{itemize} A survey is in \begin{itemize}% \item Michael Hazewinkel, W Hesseling, Dirk Siersma, and Ferdinand Veldkamp, \emph{The ubiquity of Coxeter Dynkin diagrams (an introduction to the ADE problem)}, Nieuw Archief voor Wiskunde 25 (1977), 257-307. (\href{http://oai.cwi.nl/oai/asset/10039/10039A.pdf}{pdf}) \end{itemize} which in turn is summarized in \begin{itemize}% \item Kyler Siegel, \emph{The Ubiquity of the ADE classification in Nature} , 2014 (\href{http://math.stanford.edu/~ksiegel/ADEClassifications.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/ADE_classification}{ADE classification}} \end{itemize} Discusion of the free finite group actions on spheres goes back to \begin{itemize}% \item [[John Milnor]], \emph{Groups which act on $S^n$ without fixed points}, American Journal of Mathematics Vol. 79, No. 3 (Jul., 1957), pp. 623-630 (\href{http://www.jstor.org/stable/2372566}{JSTOR}) \end{itemize} Review inclues \begin{itemize}% \item Adam Keenan, \emph{Which finite groups act freely on spheres?}, 2003 (\href{http://www.math.utah.edu/~keenan/actions.pdf}{pdf}) \end{itemize} Discussion of [[ALE spaces]] via ADE include \begin{itemize}% \item [[Peter Kronheimer]], \emph{The construction of ALE spaces as hyper-K\"a{}hler quotients}, J. Differential Geom. Volume 29, Number 3 (1989), 665-683. (\href{https://projecteuclid.org/euclid.jdg/1214443066}{Euclid}) \end{itemize} Related stuff includes\ldots{} on [[immersions]] of [[3-spheres]] into $\mathbb{R}^4$: \begin{itemize}% \item Shumi Kinjo, \emph{Immersions of 3-sphere into 4-space associated with Dynkin diagrams of types A and D} (\href{http://arxiv.org/abs/1309.6526}{arXiv:1309.6526}) \end{itemize} \hypertarget{in_string_theory}{}\subsubsection*{{In string theory}}\label{in_string_theory} The original articles explaining the appearance of ADE classification from within [[string theory]] include \begin{itemize}% \item [[Michael Douglas]], [[Gregory Moore]], \emph{D-branes, Quivers, and ALE Instantons} (\href{http://arxiv.org/abs/hep-th/9603167}{arXiv:hep-th/9603167}) \item [[Clifford Johnson]], [[Robert Myers]], \emph{Aspects of Type IIB Theory on ALE Spaces}, Phys.Rev. D55 (1997) 6382-6393 (\href{http://arxiv.org/abs/hep-th/9610140}{arXiv:hep-th/9610140}) \item [[Michael Douglas]], [[Brian Greene]], [[David Morrison]], \emph{Orbifold Resolution by D-Branes}, Nucl.Phys. B506:84-106,1997 (\href{http://arxiv.org/abs/hep-th/9704151}{arXiv:hep-th/9704151}) \item [[Brian Greene]], [[Calin Lazaroiu]], Mark Raugas, \emph{D-branes on Nonabelian Threefold Quotient Singularities}, Nucl.Phys. B553 (1999) 711-749 (\href{http://arxiv.org/abs/hep-th/9811201}{arXiv:hep-th/9811201}) \item Andrea Cappelli, Jean-Bernard Zuber, \emph{A-D-E Classification of Conformal Field Theories} (\href{http://arxiv.org/abs/0911.3242}{arXiv:0911.3242}) \end{itemize} Surveys include \begin{itemize}% \item MO discussion, \emph{\href{http://mathoverflow.net/a/34680/381}{ADE classification from string theory}} \end{itemize} Discussion of an ADE-classification of BPS [[Freund-Rubin compactifications]] is in \begin{itemize}% \item Paul de Medeiros, [[José Figueroa-O'Farrill]], Sunil Gadhia, [[Elena Méndez-Escobar]], \emph{Half-BPS quotients in M-theory: ADE with a twist}, JHEP 0910:038,2009 (\href{http://arxiv.org/abs/0909.0163}{arXiv:0909.0163}, \href{http://www.maths.ed.ac.uk/~jmf/CV/Seminars/YRM2010.pdf}{pdf slides}) \end{itemize} Specifically the ADE classfication involved in the [[6d (2,0)-supersymmetric QFT]] on the [[M5-brane]] is discussed in \begin{itemize}% \item [[Edward Witten]], \emph{Some Comments On String Dynamics} (\href{http://arxiv.org/abs/hep-th/9507121}{arXiv:hep-th/9507121}) \item [[Jonathan Heckman]], [[David Morrison]], [[Cumrun Vafa]], \emph{On the Classification of 6D SCFTs and Generalized ADE Orbifolds} (\href{http://arxiv.org/abs/1312.5746}{arXiv:1312.5746}) \end{itemize} Discussion in the context of [[M-theory on G2-manifolds]] includes \begin{itemize}% \item [[Bobby Acharya]], section 3.1.1 of \emph{M Theory, $G_2$-manifolds and Four Dimensional Physics}, Classical and Quantum Gravity Volume 19 Number 22, 2002 (\href{http://users.ictp.it/~pub_off/lectures/lns013/Acharya/Acharya_Final.pdf}{pdf}) \item [[Katrin Becker]], [[Melanie Becker]], [[John Schwarz]], p. 423 of \emph{String Theory and M-Theory: A Modern Introduction}, 2007 \end{itemize} [[!redirects ADE classifications]] [[!redirects ADE-classification]] [[!redirects ADE-classifications]] [[!redirects A-D-E classification]] [[!redirects A-D-E classifications]] \end{document}