\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ADE singularity} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ResolutionBySpheresTouchingAlongADynkinDiagram}{Resolution by spheres touching along a Dynkin diagram}\dotfill \pageref*{ResolutionBySpheresTouchingAlongADynkinDiagram} \linebreak \noindent\hyperlink{from_coincident_kkmonopoles}{From coincident KK-monopoles}\dotfill \pageref*{from_coincident_kkmonopoles} \linebreak \noindent\hyperlink{bridgeland_stability_conditions}{Bridgeland stability conditions}\dotfill \pageref*{bridgeland_stability_conditions} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{via_bridgeland_stability}{Via Bridgeland stability}\dotfill \pageref*{via_bridgeland_stability} \linebreak \noindent\hyperlink{ReferencesInStringTheory}{In string theory}\dotfill \pageref*{ReferencesInStringTheory} \linebreak \noindent\hyperlink{mtheory_on_adeorbifolds_reducing_to_d6branes_in_type_ii}{M-theory on ADE-orbifolds reducing to D6-branes in type II}\dotfill \pageref*{mtheory_on_adeorbifolds_reducing_to_d6branes_in_type_ii} \linebreak \noindent\hyperlink{heterotic_mtheory_on_adeorbifolds}{Heterotic M-theory on ADE-orbifolds}\dotfill \pageref*{heterotic_mtheory_on_adeorbifolds} \linebreak \noindent\hyperlink{heterotic_string_theory_on_adeorbifolds}{Heterotic string theory on ADE-orbifolds}\dotfill \pageref*{heterotic_string_theory_on_adeorbifolds} \linebreak \noindent\hyperlink{type_string_theory_on_adeorbifolds}{Type $I'$-string theory on ADE-orbifolds}\dotfill \pageref*{type_string_theory_on_adeorbifolds} \linebreak \noindent\hyperlink{type_string_theory_on_adeorbifolds_2}{Type $I$-string theory on ADE-orbifolds}\dotfill \pageref*{type_string_theory_on_adeorbifolds_2} \linebreak \noindent\hyperlink{mtheory_on_orbifolds_with_adesingularities}{M-theory on $G_2$-orbifolds with ADE-singularities}\dotfill \pageref*{mtheory_on_orbifolds_with_adesingularities} \linebreak \noindent\hyperlink{ftheory_with_adesingularities}{F-theory with ADE-singularities}\dotfill \pageref*{ftheory_with_adesingularities} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{ADE singularity} is an [[orbifold]] [[fixed point]] locally of the form $\mathbb{C}^2\sslash\Gamma$ with $\Gamma \hookrightarrow SU(2)$ a [[finite subgroup of SU(2)]] given by the [[ADE classification]] (and $SU(2)$ is understood with its defining linear [[action]] on the [[complex numbers|complex]] [[vector space]] $\mathbb{C}^2$). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{ResolutionBySpheresTouchingAlongADynkinDiagram}{}\subsubsection*{{Resolution by spheres touching along a Dynkin diagram}}\label{ResolutionBySpheresTouchingAlongADynkinDiagram} The [[blow-up]] of an ADE-singularity is given by a [[union]] of [[Riemann spheres]] that touch each other such as to form the shape of the [[Dynkin diagram]] whose A-D-E label corresponds to that of the given [[finite subgroup of SU(2)]]. This statement is originally due to (\hyperlink{duVal1934I}{duVal 1934 I, p. 1-3 (453-455)}). A description in terms of [[hyper-Kähler geometry]] is due to \hyperlink{Kronheimer89a}{Kronheimer 89a}. Quick survey of this fact is in \hyperlink{Reid87}{Reid 87}, a textbook account is \hyperlink{Slodowy80}{Slodowy 80}. In [[string theory]] this fact is interpreted in terms of [[gauge enhancement]] of the [[M-theory]]-lift of coincident [[black brane|black]] [[D6-branes]] to an [[MK6]] at an ADE-singularity (\href{enhanced+gauge+symmetry#Sen97}{Sen 97}): $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``ADESingularity.jpg'', ``width'': 760 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from \hyperlink{HSS18}{HSS18} \end{quote} See at \emph{[[M-theory lift of gauge enhancement on D6-branes]]} for more. $\,$ [[!include ADE -- table]] \hypertarget{from_coincident_kkmonopoles}{}\subsubsection*{{From coincident KK-monopoles}}\label{from_coincident_kkmonopoles} [[!include KK-monopole geometries -- table]] \hypertarget{bridgeland_stability_conditions}{}\subsubsection*{{Bridgeland stability conditions}}\label{bridgeland_stability_conditions} For $G_{ADE} \subset SU(2)$ a [[finite subgroup of SU(2)]], let $\tilde X$ be the [[resolution of singularities|resolution]] of the corresponding ADE-singularity as \hyperlink{ResolutionBySpheresTouchingAlongADynkinDiagram}{above}. Then the [[connected component]] of the space of [[Bridgeland stability conditions]] on the bounded [[derived category]] of [[coherent sheaves]] over $\tilde X$ can be described explicitly (\hyperlink{Bridgeland05}{Bridgeland 05}). Specifically for type-A singularities the space of stability conditions is in fact [[connected topological space|connected]] and [[simply-connected topological space]] (\hyperlink{IshiiUedaUehara10}{Ishii-Ueda-Uehara 10}). Brief review is in \hyperlink{Bridgeland09}{Bridgeland 09, section 6.3}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[singularity]] \item [[conical singularity]] \item [[quiver gauge theory]] \item [[M-theory on G2-manifolds]] \item [[D7-brane]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Original articles include \begin{itemize}% \item [[Patrick du Val]], \emph{On isolated singularities of surfaces which do not affect the conditions of adjunction. I}, Proceedings of the Cambridge Philosophical Society, 30 (4): 453–459 (1934a) (\href{https://doi.org/10.1017/S030500410001269X}{doi:10.1017/S030500410001269X}) \item [[Patrick du Val]], \emph{On isolated singularities of surfaces which do not affect the conditions of adjunction. II}, Proceedings of the Cambridge Philosophical Society, 30 (4): 460–465 (1934) (\href{https://doi.org/10.1017/S0305004100012706}{doi:10.1017/S0305004100012706}) \item [[Patrick du Val]], \emph{On isolated singularities of surfaces which do not affect the conditions of adjunction. III}, Proceedings of the Cambridge Philosophical Society, 30 (4): 483–491 (1934) (\href{https://doi.org/10.1017/S030500410001272X}{doi:10.1017/S030500410001272X}) \end{itemize} Textbook accounts include \begin{itemize}% \item Alan H. Durfee, \emph{Fifteen characterizations of rational double points and simple critical points}, L'Enseignement Mathématique Volume: 25 (1979) (\href{http://dx.doi.org/10.5169/seals-50375}{doi:10.5169/seals-50375}, \href{http://www.maths.ed.ac.uk/~v1ranick/papers/durfee15.pdf}{pdf}) \item [[Peter Slodowy]], \emph{Simple singularities and simple algebraic groups}, in Lecture Notes in Mathematics 815, Springer, Berlin, 1980. \item [[Klaus Lamotke]], chapter IV of \emph{Regular Solids and Isolated Singularities}, Vieweg, Braunschweig, Wiesbaden 1986. \item [[Miles Reid]], \emph{Young persons guide to canonical singularities, in [[Spencer Bloch]] (ed.),}\href{https://www.ams.org/books/pspum/046.1/}{Algebraic geometry -- Bowdoin 1985, Part 1}\emph{, Proc. Sympos. Pure Math. 46 Part 1, Amer. Math. Soc., Providence, RI, 1987, pp. 345-414 (\href{http://www.maths.ed.ac.uk/cheltsov/quotient/pdf/reid3.pdf}{pdf})} (The last formula on page 409 has a typo: there should be no $r$ in the [[denominator]].) \end{itemize} Discussion of [[resolution of singularities|resolution]] of ADE-singularities in terms of [[hyper-Kähler geometry]]: \begin{itemize}% \item [[Peter Kronheimer]], \emph{The construction of ALE spaces as hyper-K\"a{}hler quotients}, J. Differential Geom. Volume 29, Number 3 (1989), 665-683. (\href{https://projecteuclid.org/euclid.jdg/1214443066}{euclid:1214443066}) \item [[Peter Kronheimer]], \emph{A Torelli-type theorem for gravitational instantons}, J. Differential Geom. Volume 29, Number 3 (1989), 685-697 (\href{https://projecteuclid.org/euclid.jdg/1214443067}{euclid:1214443067}) \end{itemize} and in terms of preprojective algebras: \begin{itemize}% \item William Crawley-Boevey, Martin P. Holland, \emph{Noncommutative deformations of Kleinian singularities}, Duke Math. J. Volume 92, Number 3 (1998), 605-635 (\href{https://projecteuclid.org/euclid.dmj/1077231679}{euclid:1077231679}) \end{itemize} Reviews and lecture notes include \begin{itemize}% \item \emph{\href{http://www.mathematik.uni-kl.de/~zca/Reports_on_ca/29/paper_html/node10.html}{Classification of singularities}} \item Igor Burban, \emph{Du Val Singularities} (\href{http://www.mi.uni-koeln.de/~burban/singul.pdf}{pdf}) \item [[Miles Reid]], \emph{The Du Val Singularities $A_n$, $D_n$, $E_6$, $E_7$, $E_8$} (\href{http://homepages.warwick.ac.uk/~masda/surf/more/DuVal.pdf}{pdf}) \item Anda Degeratu, \emph{Crepant Resolutions of Calabi-Yau Orbifolds}, 2004 (\href{https://home.mathematik.uni-freiburg.de/degeratu/crepant.pdf}{pdf}) \item Fabio Perroni, \emph{Orbifold Cohomology of ADE-singularities} (\href{http://mathweb.uzh.ch/fileadmin/math/preprints/10-06.pdf}{pdf}) \item Kyler Siegel, section 6 of \emph{The Ubiquity of the ADE classification in Nature} , 2014 (\href{http://math.stanford.edu/~ksiegel/ADEClassifications.pdf}{pdf}) \item MathOverflow, \emph{\href{http://mathoverflow.net/q/186368/381}{Resolving ADE singularities by blowing up}} \end{itemize} Families of examples of [[G2 manifolds|G2 orbifolds]] with ADE singularities are constructed in \begin{itemize}% \item [[Frank Reidegeld]], \emph{$G_2$-orbifolds from K3 surfaces with ADE-singularities} (\href{http://arxiv.org/abs/1512.05114}{arXiv:1512.05114}) \item [[Frank Reidegeld]], \emph{$G_2$-orbifolds with ADE-singularities} (\href{https://core.ac.uk/download/pdf/159317626.pdf}{pdf}) \end{itemize} [[Riemannian geometry]] of manifolds with ADE singularities is discussed in \begin{itemize}% \item Boris Botvinnik, [[Jonathan Rosenberg]], \emph{Positive scalar curvature on manifolds with fibered singularities} (\href{https://arxiv.org/abs/1808.06007}{arXiv:1808.06007}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Du_Val_singularity}{du Val singularity}} \end{itemize} \hypertarget{via_bridgeland_stability}{}\subsubsection*{{Via Bridgeland stability}}\label{via_bridgeland_stability} Discussion of [[Bridgeland stability conditions]] for ([[resolution of singularities|resolutions of]]) ADE singularities includes: \begin{itemize}% \item [[Tom Bridgeland]], \emph{Stability conditions and Kleinian singularities}, International Mathematics Research Notices 2009.21 (2009): 4142-4157 (\href{https://arxiv.org/abs/math/0508257}{arXiv:0508257}) \item Akira Ishii, Kazushi Ueda, Hokuto Uehara, \emph{Stability conditions on $A_n$-singularities}, Journal of Differential Geometry 84 (2010) 87-126 (\href{https://arxiv.org/abs/math/0609551}{arXiv:math/0609551}) \end{itemize} and specifically over [[Dynkin quivers]] \begin{itemize}% \item [[Yu Qiu]], Def. 2.1 \emph{Stability conditions and quantum dilogarithm identities for Dynkin quivers}, Adv. Math., 269 (2015), pp 220-264 (\href{https://arxiv.org/abs/1111.1010}{arXiv:1111.1010}) \item [[Tom Bridgeland]], [[Yu Qiu]], Tom Sutherland, \emph{Stability conditions and the $A_2$ quiver} (\href{https://arxiv.org/abs/1406.2566}{arXiv:1406.2566}) \end{itemize} \hypertarget{ReferencesInStringTheory}{}\subsubsection*{{In string theory}}\label{ReferencesInStringTheory} Discussion of [[ADE-singularities]] in [[string theory]] on [[orbifolds]]: \hypertarget{mtheory_on_adeorbifolds_reducing_to_d6branes_in_type_ii}{}\paragraph*{{M-theory on ADE-orbifolds reducing to D6-branes in type II}}\label{mtheory_on_adeorbifolds_reducing_to_d6branes_in_type_ii} [[M-theory lift of gauge enhancement on D6-branes]]: \begin{itemize}% \item [[Ashoke Sen]], \emph{A Note on Enhanced Gauge Symmetries in M- and String Theory}, JHEP 9709:001,1997 (\href{http://arxiv.org/abs/hep-th/9707123}{arXiv:hep-th/9707123}) \item [[Luis Ibáñez]], [[Angel Uranga]], Section 6.3.3 of: \emph{[[String Theory and Particle Physics -- An Introduction to String Phenomenology]]}, Cambridge University Press 2012 \end{itemize} \hypertarget{heterotic_mtheory_on_adeorbifolds}{}\paragraph*{{Heterotic M-theory on ADE-orbifolds}}\label{heterotic_mtheory_on_adeorbifolds} [[heterotic M-theory on ADE-orbifolds]]: \begin{itemize}% \item [[Ashoke Sen]], \emph{A Note on Enhanced Gauge Symmetries in M- and String Theory}, JHEP 9709:001,1997 (\href{http://arxiv.org/abs/hep-th/9707123}{arXiv:hep-th/9707123}) \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], \emph{Intersecting Orbifold Planes and Local Anomaly Cancellation in M-Theory}, Nucl. Phys. B554: 437-483, 1999 (\href{https://arxiv.org/abs/hep-th/9903028}{arXiv:hep-th/9903028}) \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], \emph{Local Anomaly Cancellation, M-Theory Orbifolds and Phase-Transitions}, Nucl. Phys. B589: 269-291, 2000 (\href{https://arxiv.org/abs/hep-th/0005251}{arXiv:hep-th/0005251}) \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], \emph{An M-Theory Perspective on Heterotic K3 Orbifold Compactifications}, Int. J. Mod. Phys. A18:3273-3314, 2003 (\href{https://arxiv.org/abs/hep-th/0010087}{arXiv:hep-th/0010087}) \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], \emph{Twisted Sectors and Chern-Simons Terms in M-Theory Orbifolds}, Int. J. Mod. Phys. A18: 2995-3014, 2003 (\href{https://arxiv.org/abs/hep-th/0011031}{arXiv:hep-th/0011031}) \item [[Vadim Kaplunovsky]], J. Sonnenschein, [[Stefan Theisen]], S. Yankielowicz, \emph{On the Duality between Perturbative Heterotic Orbifolds and M-Theory on $T^4/Z_N$}, Nuclear Physics B Volume 590, Issues 1–2, 4 December 2000, Pages 123-160 Nuclear Physics B (\href{https://arxiv.org/abs/hep-th/9912144}{arXiv:hep-th/9912144}, ) \item E. Gorbatov, [[Vadim Kaplunovsky]], J. Sonnenschein, [[Stefan Theisen]], S. Yankielowicz, \emph{On Heterotic Orbifolds, M Theory and Type I' Brane Engineering}, JHEP 0205:015, 2002 (\href{https://arxiv.org/abs/hep-th/0108135}{arXiv:hep-th/0108135}) \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]}, CMP (2019) (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}, \href{http://link.springer.com/article/10.1007/s00220-019-03442-3}{doi:10.1007/s00220-019-03442-3}) \end{itemize} \hypertarget{heterotic_string_theory_on_adeorbifolds}{}\paragraph*{{Heterotic string theory on ADE-orbifolds}}\label{heterotic_string_theory_on_adeorbifolds} [[heterotic string theory]] on ADE-orbifolds: \begin{itemize}% \item [[Paul Aspinwall]], [[David Morrison]], \emph{Point-like Instantons on K3 Orbifolds}, Nucl. Phys. B503 (1997) 533-564 (\href{https://arxiv.org/abs/hep-th/9705104}{arXiv:hep-th/9705104}) \item [[Edward Witten]], \emph{Heterotic String Conformal Field Theory And A-D-E Singularities}, JHEP 0002:025, 2000 (\href{https://arxiv.org/abs/hep-th/9909229}{arXiv:hep-th/9909229}) \end{itemize} \hypertarget{type_string_theory_on_adeorbifolds}{}\paragraph*{{Type $I'$-string theory on ADE-orbifolds}}\label{type_string_theory_on_adeorbifolds} [[type I' string theory]] on ADE-orbifolds \begin{itemize}% \item [[Oren Bergman]], Diego Rodriguez-Gomez, Section 3 of: \emph{5d quivers and their $AdS_6$ duals}, JHEP07 (2012) 171 (\href{https://arxiv.org/abs/1206.3503}{arxiv:1206.3503}) \end{itemize} \hypertarget{type_string_theory_on_adeorbifolds_2}{}\paragraph*{{Type $I$-string theory on ADE-orbifolds}}\label{type_string_theory_on_adeorbifolds_2} [[type I string theory]] on ADE-orbifolds \begin{itemize}% \item [[Kenneth Intriligator]], \emph{New String Theories in Six Dimensions via Branes at Orbifold Singularities}, Adv. Theor. Math. Phys.1:271-282, 1998 (\href{https://arxiv.org/abs/hep-th/9708117}{arXiv:hep-th/9708117}) \end{itemize} \hypertarget{mtheory_on_orbifolds_with_adesingularities}{}\paragraph*{{M-theory on $G_2$-orbifolds with ADE-singularities}}\label{mtheory_on_orbifolds_with_adesingularities} [[M-theory on G2-manifolds]] $\,$ \href{M-theory+on%20G2-manifolds#EnhancedGaugeGroups}{with ADE-singularities}: \begin{itemize}% \item [[Bobby Acharya]], \emph{M theory, Joyce Orbifolds and Super Yang-Mills}, Adv. Theor. Math. Phys. 3 (1999) 227-248 (\href{http://arxiv.org/abs/hep-th/9812205}{arXiv:hep-th/9812205}) \item [[Bobby Acharya]], \emph{On Realising $N=1$ Super Yang-Mills in M theory} (\href{http://arxiv.org/abs/hep-th/0011089}{arXiv:hep-th/0011089}) \item [[Bobby Acharya]], B. Spence, \emph{Flux, Supersymmetry and M theory on 7-manifolds} (\href{http://arxiv.org/abs/hep-th/0007213}{arXiv:hep-th/0007213}) \item [[Bobby Acharya]], \emph{M Theory, $G_2$-manifolds and Four Dimensional Physics}, Classical and Quantum Gravity Volume 19 Number 22, 2002 (\href{http://users.ictp.it/~pub_off/lectures/lns013/Acharya/Acharya_Final.pdf}{pdf}) \item [[Michael Atiyah]], [[Juan Maldacena]], [[Cumrun Vafa]], \emph{An M-theory Flop as a Large N Duality}, J. Math. Phys.42:3209-3220, 2001 (\href{https://arxiv.org/abs/hep-th/0011256}{arXiv:hep-th/0011256}) \item [[Chris Beasley]], [[Edward Witten]], \emph{A Note on Fluxes and Superpotentials in M-theory Compactifications on Manifolds of $G_2$ Holonomy}, JHEP 0207:046,2002 (\href{http://arxiv.org/abs/hep-th/0203061}{arXiv:hep-th/0203061}) \item [[Michael Atiyah]], [[Edward Witten]] \emph{$M$-Theory dynamics on a manifold of $G_2$-holonomy}, Adv. Theor. Math. Phys. 6 (2001) (\href{http://arxiv.org/abs/hep-th/0107177}{arXiv:hep-th/0107177}) \item [[Edward Witten]], \emph{Anomaly Cancellation On Manifolds Of $G_2$ Holonomy} (\href{http://arxiv.org/abs/hep-th/0108165}{arXiv:hep-th/0108165}) \item [[Bobby Acharya]], [[Edward Witten]], \emph{Chiral Fermions from Manifolds of $G_2$ Holonomy} (\href{http://arxiv.org/abs/hep-th/0109152}{arXiv:hep-th/0109152}) \end{itemize} \hypertarget{ftheory_with_adesingularities}{}\paragraph*{{F-theory with ADE-singularities}}\label{ftheory_with_adesingularities} [[F-theory]] with ADE-singularities \begin{itemize}% \item [[Paul Aspinwall]], [[David Morrison]], \emph{Point-like Instantons on K3 Orbifolds}, Nucl. Phys. B503 (1997) 533-564 (\href{https://arxiv.org/abs/hep-th/9705104}{arXiv:hep-th/9705104}) \end{itemize} See also at \emph{[[F-branes -- table]]} [[!redirects ADE singularities]] [[!redirects ADE-singularity]] [[!redirects ADE-singularities]] [[!redirects ADE orbifold]] [[!redirects ADE orbifolds]] [[!redirects ADE-orbifold]] [[!redirects ADE-orbifolds]] [[!redirects du Val singularity]] [[!redirects du Val singularities]] \end{document}