\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{AGT correspondence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{duality_in_string_theory}{}\paragraph*{{Duality in string theory}}\label{duality_in_string_theory} [[!include duality in string theory -- contents]] \hypertarget{functorial_quantum_field_theory}{}\paragraph*{{Functorial Quantum field theory}}\label{functorial_quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{AGT correspondence} (\hyperlink{AGT09}{AGT 09}) is a relation between \begin{enumerate}% \item the [[instanton]]-[[partition function]] of $SU(2)^{n+3g-3}$-[[N=2 D=4 super Yang-Mills theory]] (Nekrasov's partition function, e.g. \hyperlink{Szabo15}{Szabo 15 (2.1)}) \item the [[conformal blocks]] of [[Liouville theory]] on an $n$-punctured [[Riemann surface]] $C_{g,n}$ of [[genus]] $g$ \end{enumerate} Here the idea is that $C_{g,n}$ is the [[super Yang-Mills theory]] obtained by [[Kaluza-Klein mechanism|compactifying]] the worldvolume [[6d (2,0)-supersymmetric QFT]] of two [[M5-branes]], see at [[N=2 D=4 super Yang-Mills theory]], the section \href{N%3D2+D%3D4+super+Yang-Mills+theory#ConstructionByCompactificationOf5Branes}{Construction by compactification}). In particular, the [[N=2 D=4 super Yang-Mills theory]] is a [[quiver gauge theory]] and the correspondence matches the shape of its [[quiver]]-diagram to the [[genus of a surface|genus]] and punctures of the [[Riemann surface]]: More generally, this construction yields something like a decomposition of the [[6d (2,0)-superconformal QFT]] into a [[2d SCFT]] ``with values in [[super Yang-Mills theory|4d SYM field theory]]'' (e.g. \hyperlink{Tachikawa10}{Tachikawa 10, slide 25 (33 of 54)}). Hence composition with any kind of suitable invariant of the 4d field theories yields an actual [[2d SCFT]], for instance taking the superconformal index in 4d yields a [[2d TQFT]] (\hyperlink{GPRR10}{GPRR 10}). In this picture of ``4d-SYM field theory-valued [[2d SCFT]]'' one has the following correspondences: \begin{itemize}% \item the [[complex structure]] in 2d is the [[coupling constants]] and [[theta angles]] etc in the 4d [[super Yang-Mills theory]]; \item the [[mapping class group]] (large [[conformal transformations]]) in 2d is the (generalized) [[S-duality]] of the 4d theory. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[duality in physics]], [[duality in string theory]] \item [[Nekrasov function]] \end{itemize} Wrapping the [[M5-brane]] on a [[3-manifold]] instead yields: [[3d-3d correspondence]]. \hypertarget{references}{}\subsection*{{References}}\label{references} The original articles are \begin{itemize}% \item [[Davide Gaiotto]], \emph{$N=2$ dualities}, JHEP08(2012)034 (\href{http://arxiv.org/abs/0904.2715}{arXiv:0904.2715}) \item Luis F. Alday, [[Davide Gaiotto]], [[Yuji Tachikawa]], \emph{Liouville Correlation Functions from Four-dimensional Gauge Theories}, Lett.Math.Phys.91:167-197, 2010 (\href{http://arxiv.org/abs/0906.3219}{arXiv:0906.3219}) \item [[Davide Gaiotto]], [[Gregory Moore]], [[Andrew Neitzke]], \emph{Wall-crossing, Hitchin Systems, and the WKB Approximation} (\href{https://arxiv.org/abs/0907.3987}{arXiv:0907.3987}) \end{itemize} The [[2d TQFT]] obtained from this by forming the 4d index is discussed in \begin{itemize}% \item Abhijit Gadde, Elli Pomoni, Leonardo Rastelli, Shlomo S. Razamat, \emph{S-duality and 2d Topological QFT}, JHEP 1003:032, 2010 (\href{http://arxiv.org/abs/0910.2225}{arXiv:0910.2225}) \end{itemize} Relation of the [[AGT-correspondence]] to the [[D=6 N=(2,0) SCFT]] \begin{itemize}% \item Benjamin Assel, Sakura Schafer-Nameki, Jin-Mann Wong, \emph{M5-branes on $S^2 \times M_4$: Nahm's Equations and 4d Topological Sigma-models}, J. High Energ. Phys. (2016) 2016: 120 (\href{https://arxiv.org/abs/1604.03606}{arxiv:1604.03606}) (relating to the [[moduli space of monopoles]]) \end{itemize} and to the [[3d-3d correspondence]]: \begin{itemize}% \item [[Clay Cordova]], [[Daniel Jafferis]], \emph{Toda Theory From Six Dimensions}, J. High Energ. Phys. (2017) 2017: 106 (\href{https://arxiv.org/abs/1605.03997}{arxiv:1605.03997}) \item Sam van Leuven, Gerben Oling, \emph{Generalized Toda Theory from Six Dimensions and the Conifold}, J. High Energ. Phys. (2017) 2017: 50 (\href{https://arxiv.org/abs/1708.07840}{arxiv:1708.07840}) \end{itemize} Brief surveys include \begin{itemize}% \item [[Yuji Tachikawa]], \emph{M5-branes, 4d gauge theory and 2d CFT}, 2010 (\href{http://member.ipmu.jp/yuji.tachikawa/transp/4d-2d-caltech.pdf}{pdf}) \item Abhijit Gadde, \emph{$\mathcal{N}= 2$ Dualities and 2d TQFT} 2012 ([[Gadde2dTQFT.pdf:file]]) \item Nikolay Bovev, \emph{New SCFTs from wrapped branes}, 2013 (\href{http://ipht.cea.fr/Meetings/Itzykson2013/Talks/bobev-Itzykson-july2013.pdf}{pdf}) \item Giulio Bonelli, \emph{Variations on AGT Correspondence}, 2013 (\href{https://indico.cern.ch/event/217384/attachments/348854/486363/Bonelli.pdf}{pdf}) \item Masato Taki, \emph{String Theory as an Attempt of PolyMathematics}, talk at 2016.4/28 iTHES-AIMR-IIS (\href{https://indico2.riken.jp/event/2215/attachments/4106/4775/Taki_invited.pdf}{pdf}) \end{itemize} More detailed review is in \begin{itemize}% \item Rober Rodger, \emph{A pedagogical introduction to the AGT conjecture}, Master Thesis Utrecht (2013) (\href{http://testweb.science.uu.nl/ITF/teaching/2013/R.J.Rodger.pdf}{pdf}) \item [[Richard Szabo]], \emph{$N=2$ gauge theories, instanton moduli spaces and geometric representation theory}, Journal of Geometry and Physics Volume 109, November 2016, Pages 83-121 (\href{https://arxiv.org/abs/1507.00685}{arXiv:1507.00685}) \end{itemize} See also \begin{itemize}% \item [[Alexander Belavin]], M. A. Bershtein, B. L. Feigin, A. V. Litvinov, G. M. Tarnopolsky, \emph{Instanton moduli spaces and bases in coset conformal field theory} (\href{http://arxiv.org/abs/1111.2803}{arxiv/1111.2803}) \item [[Volker Schomerus]], Paulina Suchanek, \emph{Liouville's imaginary shadow} (\href{http://arxiv.org/abs/1210.1856}{arxiv/1210.1856}) \item A.Mironov, A.Morozov, \emph{The power of Nekrasov functions} (\href{http://arxiv.org/abs/0908.2190}{arxiv/0908.2190}) \item D. Galakhov, A. Mironov, A. Morozov, \emph{S-duality as a beta-deformed Fourier transform} (\href{http://arxiv.org/abs/1205.4998}{arxiv/1205.4998}) \item A. Mironov, \emph{Spectral duality in integrable systems from AGT conjecture} (\href{http://arxiv.org/abs/1204.0913}{arxiv/1204.0913}) \item A. Belavin, V. Belavin, \emph{AGT conjecture and integrable structure of conformal field theory for $c=1$}, Nucl.Phys.B850:199-213 (2011) (\href{http://arxiv.org/abs/1102.0343}{arxiv/1102.0343}) \item A. Belavin, V. Belavin, M. Bershtein, \emph{Instantons and 2d Superconformal field theory} (\href{http://arxiv.org/abs/1106.4001}{arxiv/1106.4001}) \item Kazunobu Maruyoshi, \emph{Quantum integrable systems, matrix models, and AGT correspondence}, seminar (\href{http://db.ipmu.jp/seminar/sysimg/seminar/428.pdf}{slides pdf}) \item Giulio Bonelli, Alessandro Tanzini, \emph{Hitchin systems, N=2 gauge theories and W-gravity} (\href{http://arxiv.org/abs/0909.4031}{arxiv/0909.4031}) \item Giulio Bonelli, Kazunobu Maruyoshi, Alessandro Tanzini, \emph{Quantum Hitchin systems via beta-deformed matrix models} (\href{http://arxiv.org/abs/1104.4016}{arxiv/1104.4016}) \item [[Oscar Chacaltana]], [[Jacques Distler]], \emph{Tinkertoys for Gaiotto Duality}, JHEP 1011:099,2010, (\href{http://arxiv.org/abs/arXiv:1008.5203}{arXiv:1008.5203}) \item Satoshi Nawata, \emph{Givental J-functions, Quantum integrable systems, AGT relation with surface operator} (\href{http://arxiv.org/abs/1408.4132}{arXiv/1408.4132}) \end{itemize} The AGT correspondence is treated with the help of a [[Riemann-Hilbert problem]] in \begin{itemize}% \item G. Vartanov, [[Jörg Teschner]], \emph{Supersymmetric gauge theories, quantization of moduli spaces of flat connections, and conformal field theory} (\href{http://arxiv.org/abs/1302.3778}{arxiv/1302.3778}) \end{itemize} category: physics [[!redirects AGT-correspondence]] [[!redirects AGT conjecture]] [[!redirects Class S]] \end{document}