\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Ab-enriched category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{enriched_category_theory}{}\paragraph*{{Enriched category theory}}\label{enriched_category_theory} [[!include enriched category theory contents]] \hypertarget{additive_and_abelian_categories}{}\paragraph*{{Additive and abelian categories}}\label{additive_and_abelian_categories} [[!include additive and abelian categories - contents]] \hypertarget{enriched_categories}{}\section*{{$Ab$-enriched categories}}\label{enriched_categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{finite_products_are_absolute}{Finite products are absolute}\dotfill \pageref*{finite_products_are_absolute} \linebreak \noindent\hyperlink{zero_objects}{Zero objects}\dotfill \pageref*{zero_objects} \linebreak \noindent\hyperlink{biproducts}{Biproducts}\dotfill \pageref*{biproducts} \linebreak \noindent\hyperlink{as_a_generalisation_of_rings}{As a generalisation of rings}\dotfill \pageref*{as_a_generalisation_of_rings} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{$Ab$-enriched category} (or, if small, \emph{ringoid}) is a [[category enriched]] over the [[monoidal category]] [[Ab]] of [[abelian groups]] with its usual [[tensor product]]. Sometimes they are called [[pre-additive category|pre-additive categories]], but sometimes that term also implies the existence of a [[zero object]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Explicitly, an \textbf{$Ab$-enriched category} is a [[category]] $C$ such that for all objects $a,b$ the [[hom-set]] $Hom_C(a,b)$ is equipped with the structure of an [[abelian group]]; and such that for all triples $a,b,c$ of objects the [[composition]] operation $\circ_{a,b,c} : Hom_C(a,b) \times Hom_C(b,c) \to Hom_C(a,c)$ is bilinear. A \textbf{ringoid} is small $Ab$-enriched category. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item $Ab$-enriched categories are called ringoids since the concept is a [[horizontal categorification]] (or `oidification') of the concept of a [[ring]]. \item There is a canonical forgetful functor $Ab \to Set_*$ from abelian groups to [[pointed set]]s, which sends each group to its underlying set with point being the neutral element. Using this functor, every $Ab$-enriched category $C$ is in particular also a category that is enriched over pointed sets (that is, a category with [[zero morphisms]]). This is sufficient for there to be a notion of [[kernel]] and [[cokernel]] in $C$. \item In general, [[abelian category|abelian categories]] are the most important examples of $Ab$-enriched categories. See [[additive and abelian categories]]. \end{itemize} \hypertarget{finite_products_are_absolute}{}\subsection*{{Finite products are absolute}}\label{finite_products_are_absolute} One of the remarkable facts about $Ab$-enriched categories is that finite [[products]] (and [[coproducts]]) are [[absolute limit|absolute limits]]. This implies that finite products coincide with finite coproducts, and are preserved by \emph{any} $Ab$-enriched functor. \hypertarget{zero_objects}{}\subsubsection*{{Zero objects}}\label{zero_objects} In an $Ab$-enriched category $C$, any [[initial object]] is also a [[terminal object]], hence a [[zero object]], and dually. An object $a\in C$ is a zero object just when its identity $1_a$ is equal to the zero morphism $0:a\to a$ (that is, the identity element of the abelian group $\hom_C(a,a)$). Expressed in this way, it is easy to see that any $Ab$-enriched functor preserves zero objects. \hypertarget{biproducts}{}\subsubsection*{{Biproducts}}\label{biproducts} For $c_1, c_2 \in C$ two objects in an $Ab$-enriched category $C$, [[generalized the|the]] [[product]] $c_1 \times c_2$ coincides with [[generalized the|the]] [[coproduct]] $c_1 \sqcup c_2$ when either exists. More precisely, when both exist, the canonical morphism \begin{displaymath} r : c_1 \sqcup c_2 \to c_1 \times c_2 \end{displaymath} defined by \begin{displaymath} \left( c_i \to c_1 \sqcup c_2 \stackrel{r}{\to} c_1 \times c_2 \to c_j \right) = \left\{ \itexarray{ Id_c_i & if i = j \\ 0 & if i \neq j } \right. \,, \end{displaymath} which exists whenever $c_1\sqcup c_2$ and $c_1\times c_2$ do, is an [[isomorphism]]. This object is called a [[biproduct]] or (sometimes) a [[direct sum]] and is generally denoted \begin{displaymath} c_1 \oplus c_2. \end{displaymath} It can be characterized diagrammatically as an object $c_1\oplus c_2$ equipped with morphisms $q_i:c_i\to c_1\oplus c_2$ and $p_i:c_1\oplus c_2 \to c_i$ such that $p_i q_j = \delta_{i j}$ and $q_1 p_1 + q_2 p_2 = 1_{c_1\oplus c_2}$. Expressed in this form, it is clear that any $Ab$-enriched functor preserves biproducts. \hypertarget{as_a_generalisation_of_rings}{}\subsection*{{As a generalisation of rings}}\label{as_a_generalisation_of_rings} When using the term `ringoid', one often assumes a ringoid to be [[small category|small]]. Ringoids share many of the properties of (noncommutative) [[rings]]. For instance, we can talk about (left and right) [[modules]] over a ringoid $R$, which can be defined as $Ab$-enriched [[functors]] $R\to Ab$ and $R^{op}\to Ab$. [[bimodule|Bimodules]] over ringoids have a tensor product (the enriched [[tensor product of functors]]) under which they form a [[bicategory]], also known as the bicategory $Ab Prof$ of $Ab$-enriched [[profunctors]]. Modules over a ringoid also form an [[abelian category]] and thus have a [[derived category]]. One interesting operation on ringoids is the ($Ab$-enriched) [[Cauchy completion]], which is the completion under finite [[direct sums]] and [[split idempotents]]. In particular, the Cauchy completion of a ring $R$ is the category of [[finitely generated object|finitely generated]] [[projective object|projective]] $R$-modules (aka [[split monomorphism|split]] [[subobjects]] of finite-rank [[free object|free]] modules). Every ringoid is [[equivalence|equivalent]] to its Cauchy completion in the bicategory $Ab Prof$, and two ringoids are equivalent in $Ab Prof$ if and only if their Cauchy completions are [[equivalence of categories|equivalent]] as $Ab$-enriched categories. This sort of equivalence is naturally called [[Morita equivalence]]. See also [[dg-category]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The category [[Ab]] is [[closed monoidal category|closed monoidal]] and hence canonically enriched over itself. \item An $Ab$-enriched category with one object is precisely a [[ring]]. \item For any small $Ab$-enriched category $R$, the enriched [[presheaf category]] $[R^{op},Ab]$ is, of course, $Ab$-enriched. If $R$ is a ring, as above, then $[R^{op},Ab]$ is the category of $R$-modules. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[hom-group]] \item [[additive category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item John Baez, \href{http://golem.ph.utexas.edu/category/2006/09/ringoids.html}{Ringoids}, blog \item C. Weibel, [[An Introduction to Homological Algebra]], Cambridge Univ. Press \item [[Daniel Murfet]], \emph{Localisation of ringoids}, \href{http://therisingsea.org/notes/LocalisationOfRingoids.pdf}{pdf} 2006 notes \item N. Popescu, \emph{Abelian categories with applications to rings and modules}, London Math. Soc. Monographs 3, Academic Press 1973. xii+467 pp. MR0340375 \end{itemize} [[!redirects Ab-enriched category]] [[!redirects Ab-enriched categories]] [[!redirects Ab-category]] [[!redirects Ab-categories]] [[!redirects ringoid]] [[!redirects ringoids]] \end{document}