\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Adams operation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{adams_conjecture}{Adams conjecture}\dotfill \pageref*{adams_conjecture} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesInRepresentationTheory}{In representation theory}\dotfill \pageref*{ReferencesInRepresentationTheory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[complex line bundle]] $L$ over a [[space]] $X$ its $k$th tensor power $L^{\otimes k}$ is another line bundle for any $k \in \mathbb{N}$. The line bundles define certain elements of [[topological K-theory]] group $K(X)$, and there is a unique operation $\psi^k : K(X) \to K(X)$, the \emph{$k$th Adams operation}, such that: \begin{itemize}% \item $\psi^k([L]) = [L^{\otimes k}]$ if $[L]$ is the $K$-theory class of any line bundle, \item $\psi^k : K(X) \to K(X)$ is a group homomorphism, \item $\psi^k$ is a natural transformation: any map $f: X \to Y$ induces a map $f^* : K(Y) \to K(X)$ on $K$-theory, and $\psi^k \circ f^* = f^* \circ \psi^k$. \end{itemize} More abstractly, Adams operations can be defined on any [[Lambda-ring]]. They are an example of [[power operations]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} The Adams operations have an explicit definition in terms of the [[Lambda-ring]] structure on [[topological K-theory]], this we state as def. \ref{DefinitionInTermsOfLambdaRing} below. While explicit, this definition may look contrived on first sight. But it turns out that it satisfies a list of properties, of which two simple ones already uniquely characterize the Adams operations. This is proposition \ref{TheBasicProperties} below. \begin{prop} \label{LambdaRingStructureOnKTheory}\hypertarget{LambdaRingStructureOnKTheory}{} \textbf{(Lambda-ring structure on topological K-theory)} Let $X$ be a [[compact topological space]] and write $K(X)$ for its [[topological K-theory]] [[ring]]. For $E$ a [[vector bundle]] over $X$, write $[E] \in K(X)$ for its class in K-theory. Given $E$, write \begin{displaymath} \lambda_t[E] \;\coloneqq\; \underoverset{k = 0}{\infty}{\sum} [\wedge^k_X E] t^k \;\;\in\;\; K(X)[ [t] ] \end{displaymath} for the [[formal power series]] with [[coefficients]] in the ring $K(X)$ being the K-theory classes of the skew-symmetrized [[tensor product of vector bundles]] of $E$ with itself. Since the constant term of this power series is always the unit $[\wedge^0 E] = 1$, hence \begin{displaymath} \lambda_t[E] \in 1 + (t) \cdot K(X)[ [t] ] \end{displaymath} there exists a multiplicative inverse formal power series $\lambda_t[E]^{-1}$. Then given the class of a [[virtual vector bundle]] $[E] - [F] \in K(X)$, define more generally \begin{displaymath} \lambda_t[[E- F]] \;\;\coloneqq\;\, \lambda_t[E] \cdot \lambda_t[F]^{-1} \;\;\in\;\; K(X)[ [t] ] \,. \end{displaymath} \end{prop} \begin{prop} \label{DefinitionInTermsOfLambdaRing}\hypertarget{DefinitionInTermsOfLambdaRing}{} \textbf{(explicit definition of Adams operation)} For $E$ a [[vector bundle]] over some [[topological space]] $X$, write \begin{displaymath} \psi^0(E) \coloneqq rank(E) \end{displaymath} for the [[bundle]] which over each [[connected component]] of $X$ is the [[trivial bundle|trivial]] vector bundle of the same [[rank of a vector bundle|rank]] as $E$ over that component. Define a [[formal power series]] with [[coefficients]] in the K-theory ring $K(X)$ by \begin{displaymath} \begin{aligned} \psi_t(E) & \coloneqq \underoverset{\infty}{k = 0}{\sum} \psi^k(E) t^k \\ & \coloneqq \psi^0(E) - t \frac{d}{d t} log \lambda_{-t}(E) \;\;\in\;\; K(X)[ [t] ] \end{aligned} \,, \end{displaymath} where $\lambda_t$ is the [[Lambda-ring]] operation from def. \ref{LambdaRingStructureOnKTheory}. Here the [[derivative]] of the [[logarithm]] of formal power series stands for the usual expression in terms of the [[geometric series]]: \begin{displaymath} \begin{aligned} \frac{d}{d t} log \lambda_{-t}(E) & = \frac{1}{\lambda_{-t}(E)} \frac{d}{d t} \lambda_{-t}(E) \\ & = \underoverset{\infty}{k = 0}{\sum} \left( 1 - \lambda_{-t}(E) \right)^k \cdot \frac{d}{d t} \lambda_{-t}(E) \end{aligned} \,. \end{displaymath} The \textbf{$k$th Adams operation} is the [[cohomology operation]] on [[topological K-theory]] \begin{displaymath} \psi^k \;\colon\; K(-) \longrightarrow K(-) \end{displaymath} which is the coefficient of $t^k$ in $\psi_t$. \end{prop} \begin{prop} \label{TheBasicProperties}\hypertarget{TheBasicProperties}{} \textbf{(basic properties and characterization of Adams operations)} The Adams operations \begin{displaymath} \psi^k \;\colon\; K(X) \longrightarrow K(X) \end{displaymath} have the following properties, for all elements $x,y \in K(X)$ and $k, l \in \mathbb{N}$ and $p \; \text{prime}$: \begin{enumerate}% \item $\psi^k(x + y) = \psi^k(x) + \psi^k(y)$ ($\psi^k$ is a [[natural transformation|natural]] [[abelian group]] [[homomorphism]]) \item $x \,\text{a line} \;\;\Rightarrow\;\; \psi^k(x) = x^k$ (applied to a class $x \coloneqq [L]$ represented by a [[line bundle]] $L$, $\psi^k$ is the $k$th [[tensor power]]) \item $\psi^k(x \cdot y) = \psi^k(x) \cdot \psi^k(y)$ ($\psi^k$ is in fact a [[natural transformation|natural]] [[ring]] [[homomorphism]]) \item $\psi^k(\psi^l(x)) = \psi^{k l}(x)$ \item $\psi^p(x) = x^p \, \text{mod}\, p$ \item if $x \in \tilde K(S^{2n})$ ([[reduced cohomology]]) then $x \in \tilde K(S^{2n}) \hookrightarrow K(S^{2n}) \;\;\Rightarrow\;\;\psi^k(x) = k^n \cdot x$. \end{enumerate} Moreover, the first two of these already uniquely characterize the Adams operations. \end{prop} e.g. \hyperlink{Wirthmuller12}{Wirthmuller 12, section 11} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{adams_conjecture}{}\subsubsection*{{Adams conjecture}}\label{adams_conjecture} The [[Adams conjecture]] (a [[theorem]]) says that for all $k \in \mathbb{N}$ and $V \in K(X)$ there is $n \in \mathbb{N}$ such that the [[spherical fibration]] assigned to the [[K-theory]] class $k^n (\psi^k(V)-V)$ under the [[J-homomorphism]] is trivial, hence that \begin{displaymath} J \left( k^n \left( \psi^k(V) - V \right) \right) = 0 \,. \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Lambda-ring]] \item [[Steenrod square]] \item [[Steenrod operation]] \item [[power operation]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Klaus Wirthmüller]], section 11 of \emph{Vector bundles and K-theory}, 2012 (\href{ftp://www.mathematik.uni-kl.de/pub/scripts/wirthm/Top/vbkt_skript.pdf}{pdf}) \item [[Allen Hatcher]], section 2.3 of \emph{Vector bundles and K-theory} (\href{https://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}{web}) \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Adams_operation}{Adams operation}} \item [[Jacob Lurie]], remark 2 in: \emph{[[Chromatic Homotopy Theory]]}, Lecture series 2010, Lecture 35 \emph{The image of $J$} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture35.pdf}{pdf}) \end{itemize} \hypertarget{ReferencesInRepresentationTheory}{}\subsubsection*{{In representation theory}}\label{ReferencesInRepresentationTheory} Adams operations on the [[representation ring]] (the [[equivariant K-theory]] of the point) are discussed in \begin{itemize}% \item [[Tammo tom Dieck]], section 3.5 of \emph{[[Transformation Groups and Representation Theory]]}, Lecture Notes in Mathematics 766 Springer 1979 \item Robert Boltje, \emph{A characterization of Adams operations on representation rings}, 2001 (\href{https://boltje.math.ucsc.edu/publications/p01v.pdf}{pdf}) \item [[Tammo tom Dieck]], section 6.2 of \emph{Representation theory}, 2009 (\href{http://www.uni-math.gwdg.de/tammo/rep.pdf}{pdf}) \item [[Michael Boardman]], \emph{Adams operations on Group representations}, 2007 (\href{http://www.math.jhu.edu/~jmb/note/adamrept.pdf}{pdf}) \item Ehud Meir, Markus Szymik, \emph{Adams operations and symmetries of representation categories} (\href{https://arxiv.org/abs/1704.03389}{arXiv:1704.03389}) \end{itemize} [[!redirects Adams operations]] \end{document}