\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Adams resolution} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ClassicalDefinition}{Classical definition}\dotfill \pageref*{ClassicalDefinition} \linebreak \noindent\hyperlink{ViaInjectiveResolutions}{Via injective resolutions}\dotfill \pageref*{ViaInjectiveResolutions} \linebreak \noindent\hyperlink{injective_spectra}{$E$-Injective spectra}\dotfill \pageref*{injective_spectra} \linebreak \noindent\hyperlink{adams_resolutions}{$E$-Adams resolutions}\dotfill \pageref*{adams_resolutions} \linebreak \noindent\hyperlink{adams_towers}{$E$-Adams towers}\dotfill \pageref*{adams_towers} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{itemize}% \item \hyperlink{ClassicalDefinition}{Classical definition} \item \hyperlink{ViaInjectiveResolutions}{Via injective resolutions} \end{itemize} \hypertarget{ClassicalDefinition}{}\subsubsection*{{Classical definition}}\label{ClassicalDefinition} For $X$ a [[spectrum]] and $E^\bullet$ a [[generalized cohomology theory]] [[Brown representability theorem|represented]] by a [[spectrum]] $E$, then an \emph{$E$-Adams resolution} of $X$ is a [[diagram]] of the form \begin{displaymath} \itexarray{ \vdots \\ \downarrow \\ F_2 &\stackrel{f_2}{\longrightarrow}& K_2 \\ \downarrow \\ F_1 &\stackrel{f_1}{\longrightarrow}& K_1 \\ \downarrow \\ X &\stackrel{f_0}{\longrightarrow}& K_0 } \end{displaymath} where \begin{itemize}% \item each $K_i$ is a wedge of [[suspensions]] of $E$; \item each $F_{n+1} \to F_n \to K_n$ is a [[homotopy fiber sequence]]; \item each $f_n$ is a surjection on [[cohomology]]. \end{itemize} The original and default case is that where $E = H \mathbb{F}_p$ is an [[Eilenberg-MacLane spectrum]] with mod $p$ [[coefficients]], in which case $E^\bullet$ is [[ordinary cohomology]] with these coefficients. In this case the $K_i$ are [[generalized Eilenberg-MacLane spectra]]. The [[long exact sequences of homotopy groups]] for all the [[homotopy fibers]] in this diagram arrange into a diagram of the form \begin{displaymath} \itexarray{ \vdots \\ \downarrow & \nwarrow \\ \pi_\bullet(F_2) &\stackrel{\pi_\bullet(f_2)}{\longrightarrow}& \pi_\bullet(K_2) \\ \downarrow & \nwarrow^{\mathrlap{\pi_\bullet(\partial_2)}} \\ \pi_\bullet(F_1) &\stackrel{\pi_\bullet(f_1)}{\longrightarrow}& \pi_\bullet(K_1) \\ \downarrow & \nwarrow^{\mathrlap{\pi_\bullet(\partial_1)}} \\ \pi_\bullet(X) &\stackrel{\pi_\bullet(f_0)}{\longrightarrow}& \pi_\bullet(K_0) } \,, \end{displaymath} where the diagonal maps are the images of the [[connecting homomorphisms]] and hence decrease degree in $\pi_\bullet$ by one. This is an (unrolled) [[exact couple]]. The corresponding [[spectral sequence]] is the [[Adams spectral sequence]] induced by the given Adams resolution. In the case of $E = H \mathbb{F}_p$, applying [[cohomology]] $H^\bullet(-, \mathbb{F}_p)$ to the original diagram yields a [[free resolution]] of the [[cohomology ring]] $H^\bullet(X,\mathbb{Z}_p)$ by a [[chain complex]] of [[free modules]] over the [[Steenrod algebra]] $A_p$. \begin{displaymath} \itexarray{ H^\bullet(K_0) &\leftarrow& H^\bullet(\Sigma K_1) &\leftarrow& H^\bullet(\Sigma^2 K_2) &\leftarrow& \cdots \\ \downarrow && \downarrow && \downarrow \\ H^\bullet(X) &\leftarrow& 0 &\leftarrow& 0 &\leftarrow& \cdots } \end{displaymath} The computaton of the [[cohomology]] of $X$ by means of this resolution is given by the [[Adams spectral sequence]]. \hypertarget{ViaInjectiveResolutions}{}\subsubsection*{{Via injective resolutions}}\label{ViaInjectiveResolutions} A streamlined discussion of $E$-Adams resolutions in close analogy to [[injective resolutions]] in [[homological algebra]] was given in (\hyperlink{Miller81}{Miller 81}), advertized in (\hyperlink{Hopkins99}{Hopkins 99}) and worked out in more detail in (\hyperlink{Aramian}{Aramian}). Write $HoSpectra$ for the [[stable homotopy category]] and write \begin{displaymath} [-,-] \;\colon\; HoSpectra^{op} \times HoSpectra \longrightarrow Ab \end{displaymath} for the [[hom-functor]] with values in [[abelian groups]]. \begin{defn} \label{HomotopyFunctor}\hypertarget{HomotopyFunctor}{} For $S \in HoSpectra$, the \emph{homotopy functor it represents} is the [[representable functor]] \begin{displaymath} [S,-] \;\colon\; HoSpectra \longrightarrow Ab \end{displaymath} (as opposed to the other, contravariant, functor). \end{defn} \begin{example} \label{}\hypertarget{}{} For $S = \Sigma^\infty S^n \simeq \Sigma^n \mathbb{N}$ then \begin{displaymath} [\Sigma^\infty S^n ,- ]\simeq \pi_n \end{displaymath} is the $n$th [[homotopy group]]-functor. \end{example} Throughout, let $E$ be a [[ring spectrum]]. \hypertarget{injective_spectra}{}\paragraph*{{$E$-Injective spectra}}\label{injective_spectra} First we consider a concept of $E$-[[injective objects]] in [[Spectra]]. \begin{defn} \label{ExactSequences}\hypertarget{ExactSequences}{} Say that \begin{enumerate}% \item a sequence of spectra \begin{displaymath} A_1 \longrightarrow A_2 \longrightarrow \cdots \longrightarrow A_n \end{displaymath} is \begin{enumerate}% \item a (long) \emph{exact sequence} if the induced sequence of homotopy functors, def. \ref{HomotopyFunctor}, is a [[long exact sequence]] in $[HoSpectra,Ab]$; \item (for $n = 2$) a \emph{short exact sequence} if \begin{displaymath} 0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow 0 \end{displaymath} is (long) exact; \end{enumerate} \item a morphism $A \longrightarrow B$ is \begin{enumerate}% \item a \emph{monomorphism} if $0 \longrightarrow A \longrightarrow B$ is an exact sequence; \item an \emph{epimorphism} if $A \longrightarrow B \longrightarrow 0$ is an exact sequence. \end{enumerate} \end{enumerate} For $E$ a [[ring spectrum]], then a sequence of spectra is (long/short) \emph{$E$-exact} and a morphism is epi/mono, respectively, if becomes long/short exact or epi/mono, respectively, after taking [[smash product of spectra|smash product]] with $E$. \end{defn} \begin{example} \label{}\hypertarget{}{} Every [[homotopy cofiber sequence]] of spectra is exact in the sense of def. \ref{ExactSequences}. \end{example} \begin{remark} \label{}\hypertarget{}{} Consecutive morphisms in an $E$-exact sequence according to def. \ref{ExactSequences} in general need not compose up to homotopy, to the [[zero morphism]]. But this does become true for sequences of $E$-injective objects, defined below in def. \ref{EInjective}. \end{remark} \begin{lemma} \label{}\hypertarget{}{} \begin{enumerate}% \item If $f \colon B\longrightarrow A$ is a monomorphism in the sense of def. \ref{ExactSequences}, then there exists a morphism $g \colon C \longrightarrow A$ such that the [[wedge sum]] morphism is a [[weak homotopy equivalence]] \begin{displaymath} f \vee g \;\colon\; B \wedge C \stackrel{\simeq}{\longrightarrow} A \,. \end{displaymath} \item If $f \colon A \longrightarrow B$ is an epimorpimsm in the sense of def. \ref{ExactSequences}, then there exists a homotopy [[section]] $s \colon B\to A$, i.e. $f\circ s\simeq Id$, together with a morphism $g \colon C \to A$ such that the [[wedge sum]] morphism is a [[weak homotopy equivalence]] \begin{displaymath} s \vee f \colon B\vee C \stackrel{\simeq}{\longrightarrow} A \,. \end{displaymath} \end{enumerate} \end{lemma} \begin{defn} \label{EInjective}\hypertarget{EInjective}{} For $E$ a [[ring spectrum]], say that a spectrum $S$ is \emph{$E$-injective} if for each morphism $A \longrightarrow S$ and each $E$-monomorphism $f \colon A \longrightarrow B$ in the sense of def. \ref{ExactSequences}, there is a [[diagram]] in [[HoSpectra]] of the form \begin{displaymath} \itexarray{ A &\longrightarrow & S \\ \downarrow & \nearrow_{\mathrlap{\exists}} \\ B } \,. \end{displaymath} \end{defn} \begin{lemma} \label{}\hypertarget{}{} If $S$ is $E$-injective in the sense of def. \ref{EInjective}, then there exists a spectrum $X$ such that $S$ is a [[retract]] in [[HoSpectra]] of $E \wedge X$. \end{lemma} \hypertarget{adams_resolutions}{}\paragraph*{{$E$-Adams resolutions}}\label{adams_resolutions} \begin{defn} \label{EAdamsResolution}\hypertarget{EAdamsResolution}{} For $E$ a [[ring spectrum]], then an \emph{$E$-Adams resolution} of an spectrum $S$ is a long exact sequence, in the sense of def. \ref{ExactSequences}, of the form \begin{displaymath} 0 \longrightarrow S \longrightarrow I_0 \longrightarrow I_1 \longrightarrow I_2 \longrightarrow \cdots \end{displaymath} such that each $I_j$ is $E$-injective, def. \ref{EInjective}. \end{defn} \begin{lemma} \label{}\hypertarget{}{} Any two consecutive maps in an $E$-Adams resolution compose to the [[zero morphism]]. \end{lemma} \begin{lemma} \label{}\hypertarget{}{} For $X \to X_\bullet$ an $E$-Adams resolution, def. \ref{EAdamsResolution}, and for $X \longrightarrow Y$ any morphism, then there exists an $E$-Adams resolution $Y \to J_\bullet$ and a [[commuting diagram]] \begin{displaymath} \itexarray{ X &\longrightarrow& I_\bullet \\ \downarrow^{\mathrlap{f}} && \downarrow^{\mathrlap{g_\bullet}} \\ Y &\longrightarrow& J_\bullet } \,. \end{displaymath} \end{lemma} \begin{example} \label{}\hypertarget{}{} \textbf{(standard resolution)} Consider the augmented [[cosimplicial object|cosimplicial]] which is the $\mathbb{S} \to E$-[[Amitsur complex]] [[smash product of spectra|smashed]] with $X$: \begin{displaymath} X \longrightarrow E \wedge X \stackrel{\longrightarrow}{\longrightarrow} E \wedge E \wedge X \stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\longrightarrow}} E \wedge E \wedge E \wedge X \stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\longrightarrow}}} \cdots \,. \end{displaymath} Its corresponding [[Moore complex]] (the sequence whose maps are the alternating sum of the above coface maps) is an $E$-Adams resolution, def. \ref{EAdamsResolution}. \end{example} \hypertarget{adams_towers}{}\paragraph*{{$E$-Adams towers}}\label{adams_towers} \begin{defn} \label{EAdamsTower}\hypertarget{EAdamsTower}{} An \emph{$E$-Adams tower} of a spectrum $X$ is a [[commuting diagram]] in [[HoSpectra]] of the form \begin{displaymath} \itexarray{ && \vdots \\ && \downarrow^{\mathrlap{p_2}} \\ && X_2 &\stackrel{\kappa_2}{\longrightarrow}& \Omega^2 I_3 \\ &\nearrow& \downarrow^{\mathrlap{p_1}} \\ && X_1 &\stackrel{\kappa_1}{\longrightarrow}& \Omega I_2 \\ &\nearrow& \downarrow^{\mathrlap{p_0}} \\ X &\underset{}{\longrightarrow}& X_0 = I_0 &\stackrel{\kappa_0}{\longrightarrow}& I_1 } \end{displaymath} such that \begin{enumerate}% \item each hook is a [[homotopy fiber sequence]] (hence it is a [[tower of homotopy fibers]]); \item the [[composition]] of the $(\Sigma \dashv \Omega)$-[[adjuncts]] of $\Sigma_{p_{n-1}}$ with $\Sigma^n \kappa_n$ \begin{displaymath} i_{n+1} \;\colon\; I_n \stackrel{\widetilde {\Sigma p_{n-1}}}{\longrightarrow} \Sigma^n X_n \stackrel{\Sigma^{n}\kappa_n}{\longrightarrow} I_{n+1} \end{displaymath} constitute an $E$-Adams resolution of $X$, def. \ref{EAdamsResolution}: \begin{displaymath} 0 \to X \stackrel{i_0}{\to} I_0 \stackrel{i_2}{\to} I_2 \stackrel{}{\to} \cdots \,. \end{displaymath} \end{enumerate} Call this the \emph{associated $E$-Adams resolution} of the $E$-Adams tower. The \emph{associated inverse sequence} is \begin{displaymath} X = X_0 \stackrel{\gamma_0}{\longleftarrow} \Omega C_1 \stackrel{\gamma_1}{\longleftarrow} C_2 \longleftarrow \cdots \end{displaymath} where $C_{k+1} \coloneqq hocofib(i_k)$. \end{defn} (In (\hyperlink{Ravenel}{Ravenel}) it is is the associated inverse sequence that is called the associated resolution.) =-- \begin{example} \label{}\hypertarget{}{} Every $E$-Adams resolution of $X$, def. \ref{EAdamsResolution}, induces an $E$-Adams tower, def. \ref{EAdamsTower} of which it is the associated $E$-Adams resolution. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Whitehead tower]], [[Postnikov tower]] \item [[E-nilpotent completion]] \item [[Adams spectral sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Reviews include \begin{itemize}% \item [[Doug Ravenel]], around Chapter 2, def. 2.1.3 of \emph{[[Complex cobordism and stable homotopy groups of spheres]]} \item [[Stanley Kochmann]], section 3.6 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} A streamlined presentation close in spirit to constructions in [[homological algebra]] was given in \begin{itemize}% \item [[Haynes Miller]], \emph{On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space}, J. Pure Appl. Algebra 20 (1981) (\href{http://math.mit.edu/~hrm/papers/miller-relations-between-adams-spectral-sequences.pdf}{pdf}) \end{itemize} and is reproduced and expanded on in \begin{itemize}% \item [[Mike Hopkins]], section 5 of \emph{Complex oriented cohomology theories and the language of stacks}, course notes 1999 (\href{http://www.math.rochester.edu/u/faculty/doug/otherpapers/coctalos.pdf}{pdf}) \item [[Nersés Aramian]], \emph{The Adams spectral sequence} ([[AramianANSS.pdf:file]]) \end{itemize} [[!redirects Adams resolutions]] [[!redirects Adams tower]] [[!redirects Adams towers]] \end{document}