\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Albert algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{exceptional_structures}{}\paragraph*{{Exceptional structures}}\label{exceptional_structures} [[!include exceptional structures -- contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{uniqueness}{Uniqueness}\dotfill \pageref*{uniqueness} \linebreak \noindent\hyperlink{RelationTo10dSuperSpacetime}{Relation to 10d super-Spacetime}\dotfill \pageref*{RelationTo10dSuperSpacetime} \linebreak \noindent\hyperlink{Automorphisms}{Automorphisms and exceptional Lie groups}\dotfill \pageref*{Automorphisms} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \emph{octonionic Albert algebra} is the [[Jordan algebra]] of $3$-by-$3$ [[hermitian matrices]] over the [[octonions]] $\mathbb{O}$ \begin{equation} \mathfrak{h}_3(\mathbb{O}) \;\coloneqq\; \left\{ \left( \itexarray{ (x_0 + x_1) & y & \psi_1 \\ y^\ast & (x_0 - x_1) & \psi_2 \\ \psi_1^\ast & \psi_2^\ast & \phi } \right) \;|\; \itexarray{ x_0, x_1, \phi \in \mathbb{R} \hookrightarrow \mathbb{O} \\ \psi_1, \psi_2 \in \mathbb{O} } \right\} \label{3Times3HermitianMatrix}\end{equation} Similarly the \emph{split-octonionic Albert algebra} is the algebra of $3$-by-$3$ [[hermitian matrices]] over the [[split-octonions]]. The construction is due to (\hyperlink{Albert}{Albert 1934}), originating in an algebraic approach to [[quantum mechanics]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{uniqueness}{}\subsubsection*{{Uniqueness}}\label{uniqueness} The octonionic and split-octonionic Albert algebras are (up to [[isomorphism]]) the only [[simple algebra|simple]] [[finite-dimensional space|finite-dimensional]] [[formally real algebra|formally real]] [[Jordan algebras]] over the [[real numbers]] that are not [[special Jordan algebra|special]], together comprising the \emph{real Albert algebras}. Their [[complexifications]] are [[isomorphism|isomorphic]], the \emph{complex-octonionic Albert algebra}, or simply the \emph{complex Albert algebra}. Analogues exist over any [[field]]. An \emph{exceptional Jordan algebra} (over any [[field]]) is any [[Jordan algebra]] in which an Albert algebra appears as a [[direct summand]]. Every formally real Jordan algebra over the real numbers is either special or exceptional (so they all have excellent self-esteem). The exceptional Jordan algebras are related to the \href{exceptional+Lie+group#lie_algebras_2}{exceptional Lie algebras}. \hypertarget{RelationTo10dSuperSpacetime}{}\subsubsection*{{Relation to 10d super-Spacetime}}\label{RelationTo10dSuperSpacetime} The form of the $3 \times 3$-hermitian matrix in \eqref{3Times3HermitianMatrix} makes it manifest that the exceptional Jordan algebra is naturally a [[linear map|linear]] [[direct sum]] of the form \begin{displaymath} \mathfrak{h}_3(\mathbb{O}) \;\simeq_{\mathbb{R}}\; \mathfrak{h}_2(\mathbb{O}) \oplus \mathbb{O}^2 \oplus \mathbb{R} \end{displaymath} via \begin{displaymath} \underset{ \mathfrak{h}_3(\mathbb{O}) }{ \underbrace{ \left\{ \left( \itexarray{ (x_0 + x_1) & y & \psi_1 \\ y^\ast & (x_0 - x_1) & \psi_2 \\ \psi_1^\ast & \psi_2^\ast & \phi } \right) \right\} }} \;\simeq\; \underset{ \mathfrak{h}_2(\mathbb{O}) }{ \underbrace{ \left\{ \left( \itexarray{ (x_0 + x_1) & y & 0 \\ y^\ast & (x_0 - x_1) & 0 \\ 0 & 0 & 0 } \right) \right\} } } \oplus \underset{ \mathbb{O}^2 }{ \underbrace{ \left\{ \left( \itexarray{ 0 & 0 & \psi_1 \\ 0 & 0 & \psi_2 \\ \psi_1^\ast & \psi_2^\ast & 0 } \right) \right\} } } \oplus \underset{ \mathbb{R} }{ \underbrace{ \left\{ \left( \itexarray{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \phi } \right) \right\} } } \end{displaymath} with \begin{displaymath} \itexarray{ x_0, x_1, \phi \in \mathbb{R} \hookrightarrow \mathbb{O} \\ \psi_1, \psi_2 \in \mathbb{O} } \end{displaymath} By the discussion at \emph{[[geometry of physics -- supersymmetry]]} in the section \emph{\href{geometry+of+physics+--+supersymmetry#InTermsOfNormedDivisionAlgebraInDimension3To10}{Real spinors in dimension 3,4,6,10}} these summands may be further identified as follows: \begin{itemize}% \item $\mathfrak{h}_2(\mathbb{O}) \simeq \mathbb{R}^{9,1}$ is the incarnation of 10-dimensional [[super-Minkowski spacetime]] via octonionic [[Pauli matrices]]; \item under this identification $\mathbb{O}^2 \simeq \mathbf{16}$ is the [[Majorana-Weyl spinor]] [[real spin representation]] of the [[spin group]] $Spin(9,1)$. \end{itemize} \begin{displaymath} \mathfrak{h}_3(\mathbb{O}) \; \simeq_{\mathbb{R}} \; \underset{ dim_{\mathbb{R}} = 26 }{ \underbrace{ \mathbb{R}^{9,1} \oplus \mathbf{16} }} \oplus \mathbb{R} \,. \end{displaymath} Under these identifications, $\phi \in \mathbb{R}$ looks like the size of $S^1/(\mathbb{Z}_2)$ in [[Horava-Witten theory]]. This decomposition hence induces an [[action]] of the [[spin group]] $Spin(9,1)$ on the exceptional Jordan algebra. While only the subgroup $Spin(9) \hookrightarrow Spin(9,1)$ of that is an [[isomorphism]] of the [[Jordan algebra]]-[[structure]] itself, the full $Spin(9,1)$-[[action]] does preserve the [[determinant]] on $\mathfrak{h}_3(\mathbb{O})$. \hypertarget{Automorphisms}{}\subsubsection*{{Automorphisms and exceptional Lie groups}}\label{Automorphisms} \begin{prop} \label{}\hypertarget{}{} \textbf{([[general linear group]] of $Mat_{3\times 3}^{herm}(\mathbb{O})$ preserving [[determinant]] is [[E6]])} The [[group]] of [[determinant]]-preserving [[linear map|linear]] [[isomorphisms]] of the vector space underlying the octonionic Albert algebra is the [[exceptional Lie group]] [[E6]]${}_{(-26)}$. \end{prop} (see e.g. (\hyperlink{ManogueDray09}{Manogue-Dray 09})). \begin{prop} \label{JordanAutomorphisms}\hypertarget{JordanAutomorphisms}{} \textbf{([[Jordan algebra]] [[automorphism group]] of $Mat_{3\times 3}^{herm}(\mathbb{O})$ is [[F4]])} The [[group]] of [[automorphism]] with respect to the [[Jordan algebra]] structure $\circ$ on the octonionic Albert algebra is the [[exceptional Lie group]] [[F4]]: \begin{displaymath} Aut\left( Mat_{3\times 3}^{herm}(\mathbb{O}), \circ \right) \;\simeq\; F_4 \,. \end{displaymath} \end{prop} (e.g. \hyperlink{Yokota09}{Yokota 09, section 2.2}) \begin{prop} \label{JordanAlgebraAutomorphismsFixingAnImaginaryOctonion}\hypertarget{JordanAlgebraAutomorphismsFixingAnImaginaryOctonion}{} \textbf{([[Jordan algebra]] [[automorphism group]] of $Mat_{3 \times 3}^{herm}(\mathbb{O})$ fixing an [[imaginary number|imaginary]] [[octonion]])} Fix an [[imaginary number|imaginary]] [[octonion]] $i \in \mathbb{O}$, hence a $\mathbb{R}$-[[linear map|linear]] [[direct sum]] decomposition \begin{displaymath} \mathbb{O} \;\simeq_{\mathbb{R}}\; \mathbb{C} \oplus V \phantom{AA}\text{with}\phantom{AA} V \simeq_{\mathbb{R}} \mathbb{C}^3 \,, \end{displaymath} and let \begin{equation} \itexarray{ Mat_{3 \times 3}^{herm}(\mathbb{O}) &\overset{w}{\longrightarrow}& Mat_{3 \times 3}^{herm}(\mathbb{O}) } \label{ComponentwiseiFixingAutomorphism}\end{equation} be given componentwise by the identity on $\mathbb{C}$ and by multiplication with some fixed non-vanishing number on $V$. Then the [[subgroup]] of the [[Jordan algebra]] [[automorphism]] group $Aut\left(Mat_{3\times 3}^{herm}(\mathbb{O}), \circ \right) \;\simeq\; F_4$ (Prop. \ref{JordanAutomorphisms}) of elements that commute with $w$ \eqref{ComponentwiseiFixingAutomorphism} \begin{displaymath} F_4^w \;\coloneqq\; \left\{ \alpha \in F_4 \;\vert\; w \alpha = \alpha w \right\} \end{displaymath} is \begin{displaymath} F_4^w \;\simeq\; \big( SU(3) \times SU(3) \big)/ \mathbb{Z}_3 \,, \end{displaymath} where every element in the [[direct product group]] of [[SU(3)]] with itself \begin{displaymath} (A, B) \in SU(3) \times SU(3) \end{displaymath} [[action|acts]] on an element \begin{displaymath} \underset{ \in Mat_{3\times 3}^{herm}(\mathbb{O}) }{\underbrace{\;X\;}} \;\simeq\; \underset{ \in Mat_{3\times 3}^{herm}(\mathbb{C}) }{\underbrace{\;X_{\mathbb{C}}\;}} \;+\; \underset{ \in Mat_{3 \times 3}(\mathbb{C}) }{\underbrace{X_{V}}} \end{displaymath} via [[matrix multiplication]] as \begin{equation} X_{\mathbb{C}} + X_{\mathbb{V}} \;\mapsto\; A X_{\mathbb{C}} A^\dagger \;+\; B X_{V} A^\dagger \label{MatrixMultiplicationRepresentationOfiFixingJordanAutomorphism}\end{equation} (with $(-)^\dagger$ being the [[conjugate transpose matrix]], hence the [[inverse matrix]] for the [[unitary matrices]] under consideration) and where the [[quotient group|quotient]] is by the [[cyclic group|cyclic]] [[subgroup]] \begin{displaymath} \mathbb{Z}_3 \;\subset\; SU(3) \times SU(3) \end{displaymath} which is [[generators and relations|generated]] by the [[pair]] of [[diagonal matrices]] \begin{equation} \left( e^{2\pi i \tfrac{1}{3}} \mathbf{1}_3 \;,\; e^{2\pi i \tfrac{1}{3}} \mathbf{1}_3 \right)/ \;\in \; SU(3) \times SU(3) \,. \label{Z3Generator}\end{equation} \end{prop} (\hyperlink{Yokota09}{Yokota 09, theorem 2.12.2}) $\backslash$begin\{prpn\} $\backslash$label\{StabilizerOf4dMinkowskiInsideOctonionicAlbertAlgebra\} The further [[subgroup]] of $F_4^w \simeq \big( SU(3) \times SU(3) \big) / \mathbb{Z}_3 \;\subset\; F_4$ (Prop. \ref{JordanAlgebraAutomorphismsFixingAnImaginaryOctonion}) which fixes a subspace \begin{displaymath} Mat_{2 \times 2}^{herm}(\mathbb{C}) \;\subset\; \underset{ Mat_{3 \times 3}^{herm}( \mathbb{O} ) }{ \underbrace{ Mat_{3 \times 3}^{herm}(\mathbb{C}) \;\oplus\; Mat_{3 \times 3}(V) }} \end{displaymath} (hence, by the \hyperlink{RelationTo10dSuperSpacetime}{above}, a 4d [[Minkowski spacetime]] (incarnated via its [[Pauli matrices]]) inside the 10d [[Minkowski spacetime]] inside the octonionic Albert algebra) is \begin{displaymath} \big( U(1) \times SU(2) \times SU(3) \big) / \mathbb{Z}_6 \,, \end{displaymath} where the [[quotient group|quotient]] is by the [[cyclic group|cyclic]] [[subgroup]] which is [[generators and relations|generated]] by the element \begin{displaymath} \left( \exp\left(2 \pi i \tfrac{1}{6}\right)\;,\; \exp\left(2 \pi i \tfrac{1}{2}\right) \mathbf{1}_2\;,\; \exp\left(2 \pi i \tfrac{1}{3}\right) \mathbf{1}_3 \right) \;\in\; U(1) \times SU(2) \times SU(3) \,. \end{displaymath} (Hence this group happens to coincide with the \emph{exact} [[gauge group]] of the [[standard model of particle physics]], see \href{standard+model+of+particle+physics#GaugeGroup}{there}). $\backslash$end\{prpn\} This was claimed without proof in \hyperlink{DuboisVioletteTodorov18}{Dubois-Violette \& Todorov 18}. $\backslash$begin\{proof\} By Prop. \ref{JordanAlgebraAutomorphismsFixingAnImaginaryOctonion} \eqref{MatrixMultiplicationRepresentationOfiFixingJordanAutomorphism} it is clear that the subgroup in question is that represented by those [[pairs]] $(A,B) \in SU(3) \times SU(3)$ for which $A$ is $(1 + 2)$-block diagonal. Such matrices $A$ form the [[subgroup]] of [[SU(3)]] of [[matrices]] that may be written in the form \begin{displaymath} diag\left( c^2, c^{-1} \mathbf{\sigma} \right) \end{displaymath} for $c \in U(1)$ and $\mathbf{\sigma} \in$ [[SU(2)]]. The [[kernel]] of the [[group homomorphism]] \begin{equation} \itexarray{ U(1) \times SU(2) &\longrightarrow& SU(3) \\ (c,\mathbf{\sigma}) &\mapsto& diag\left( c^{2}, c^{-1} \mathbf{\sigma} \right) } \label{IdentifyingU1SU2inSU3}\end{equation} is clearly the [[cyclic group]] \begin{equation} \left\{ (1,\mathbf{1}_2)\;,\; \left( e^{2\pi i \tfrac{1}{2}},e^{2\pi i \tfrac{1}{2}}\mathbf{1}_2 \right) \right\} \;\simeq\; \mathbb{Z}_2 \,. \label{Z2Generator}\end{equation} Hence the subgroup in question is \begin{displaymath} \begin{aligned} \Big( \big( U(1) \times SU(2) \big)/ \mathbb{Z}_2 \;\times\; SU(3) \Big)/ \mathbb{Z}_3 & \simeq \Big( \Big( \big( U(1) \times SU(2) \big) \;\times\; SU(3) \Big) / \mathbb{Z}_2 \Big) / \mathbb{Z}_3 \\ &\simeq \Big( \big( U(1) \times SU(2) \big) \;\times\; SU(3) \Big) / \mathbb{Z}_6 \,, \end{aligned} \end{displaymath} where in the first step we extended the $\mathbb{Z}_2$-[[action]] as the [[trivial action]] on the $SU(3)$-factor, and in the second step we used the evident [[isomorphism]] $\mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6$ (an application of the ``[[fundamental theorem of cyclic groups]]'', if you wish). It remains to see that the [[action]] of $\mathbb{Z}_6$ is as claimed. By the above identification $\mathbb{Z}_6 \simeq \mathbb{Z}_2 \times \mathbb{Z}_3$, it is generated by the \emph{joint} action of that of the generators of $\mathbb{Z}_3$ and of $\mathbb{Z}_2$, which, by \eqref{Z3Generator} and \eqref{Z2Generator}, is \begin{displaymath} \underset{ \text{generator of}\, \mathbb{Z}_3 }{ \underbrace{ \Big( e^{2\pi i \tfrac{1}{3}} \;,\; e^{2\pi i \tfrac{1}{3}} \mathbf{1}_2\;,\; e^{2\pi i \tfrac{1}{3}} \mathbf{1}_3 \Big) } } \underset{ \text{generator of} \, \mathbb{Z}_2 }{ \underbrace{ \Big( 1 , (e^{2 \pi i \tfrac{1}{2}}) (e^{2 \pi i \tfrac{1}{2}}\mathbf{1}_2), \mathbf{1}_3 \Big) } } \;=\; \left( e^{2\pi i \tfrac{1}{3}} \;,\; \underset{ = e^{2\pi i \tfrac{-1}{6}} }{ \underbrace{ e^{2\pi i \tfrac{1}{2}} e^{2\pi i \tfrac{1}{3}} }} \; ( e^{2 \pi i \tfrac{1}{2}} \mathbf{1}_2) \;,\; e^{2\pi i \tfrac{1}{3}} \mathbf{1}_3 \right) \end{displaymath} as an element in $SU(3) \times SU(3)$, hence is \begin{displaymath} \Big( e^{2\pi i \tfrac{1}{6}} \;,\; e^{2\pi i \tfrac{1}{2}}\mathbf{1}_2 \;,\; e^{2\pi i \tfrac{1}{3}}\mathbf{1}_3 \;,\; \Big) \;\in\; U(1) \times SU(2) \times SU(3) \end{displaymath} under the lift through \eqref{IdentifyingU1SU2inSU3}. $\backslash$end\{proof\} \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[Abraham Adrian Albert]], \emph{On a Certain Algebra of Quantum Mechanics}, Annals of Mathematics, Second Series 35 (1): 65--73, (1934)(doi:\href{http://dx.doi.org/10.2307/1968118}{10.2307/1968118}, \href{https://www.jstor.org/stable/1968118}{JSTOR}). \end{itemize} A textbook account is in \begin{itemize}% \item [[Tonny Springer]], [[Ferdinand Veldkamp]], chapter 5 of \emph{Octonions, Jordan Algebras, and Exceptional Groups}, Springer Monographs in Mathematics, 2000 \end{itemize} Further discussion: \begin{itemize}% \item [[John Baez]], \href{http://math.ucr.edu/home/baez/octonions/node12.html}{section 3.4} \emph{$\mathbb{O}P^2$ and the Exceptional Jordan Algebra} of \emph{The Octonions}, Bull. Amer. Math. Soc. 39 (2002), 145-205. (\href{http://math.ucr.edu/home/baez/octonions/octonions.html}{web}) \item Ichiro Yokota, \emph{Exceptional Lie groups} (\href{https://arxiv.org/abs/0902.0431}{arXiv:0902.0431}) \item [[Corinne Manogue]], [[Tevian Dray]], \emph{Octonions, $E_6$, and Particle Physics}, J.Phys.Conf.Ser.254:012005,2010 (\href{http://arxiv.org/abs/0911.2253}{arXiv:0911.2253}) \item Michel Dubois-Violette, Ivan Todorov, \emph{Exceptional quantum geometry and particle physics II} (\href{https://arxiv.org/abs/1808.08110}{arXiv:1808.08110}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Albert_algebra}{Albert algebra}} \end{itemize} [[!redirects exceptional Jordan algebra]] [[!redirects exceptional Jordan algebras]] [[!redirects Albert algebra]] [[!redirects Albert algebras]] [[!redirects real Albert algebra]] [[!redirects real Albert algebras]] [[!redirects octonionic Albert algebra]] [[!redirects octonionic Albert algebras]] [[!redirects split-octonionic Albert algebra]] [[!redirects split-octonionic Albert algebras]] [[!redirects split octonionic Albert algebra]] [[!redirects split octonionic Albert algebras]] [[!redirects complex Albert algebra]] [[!redirects complex Albert algebras]] [[!redirects complexified Albert algebra]] [[!redirects complexified Albert algebras]] [[!redirects complex-octonionic Albert algebra]] [[!redirects complex-octonionic Albert algebras]] [[!redirects complex octonionic Albert algebra]] [[!redirects complex octonionic Albert algebras]] \end{document}