\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Alexander Beilinson} \textbf{Alexander (or Sasha) Belinson} is currently a professor at University of Chicago. He was student of [[Yuri Manin]] at Moscow State University, with main works in algebraic geometry. He has made visionary contributions to the study of algebraic cycles, automorphic forms and L-functions, [[algebraic K-theory]], Hodge theory, [[motive]]s and [[motivic cohomology]]. He conjectured the category of motivic sheaves with remarkable cohomological properties, what is often called the Belinson dream. Some of his works, especially those in collaboration with [[Vladimir Drinfeld|Vladimir Drinfel'd]] are of large importance to mathematical physics, especially on their concept of \textbf{[[chiral algebra]]s} which are an approach to a chiral part of the [[conformal field theory]] on a curve, which is a geometric counterpart of the theory of [[vertex operator algebra]]s. In late 1980s Belinson proposed a geometric analogue of the Langlands program, now called [[geometric Langlands]] program, which has been continued in his collaboration with Drinfel'd and also by Ed Frenkel, Dennis Gaitsgory, [[Ivan Mirković]], Kari Vilonen, and more recently taken up by mathematical physics community lead by [[Edward Witten|Witten]]. Belinson has substantial contributions to [[geometric representation theory]], which has been revolutionized after two discoveries: his proof (with input from Bernstein) of Kazhdan-Lusztig's connjectures in 1980, and his paper with Bernstein on what is now called [[Beĭlinson-Bernstein localization]] theorem, which lead to influx of the algebraic methods involving algebraic D-modules to representation theory. With Kazhdan, Belinson has used D-modules in the proof of Jantzen's conjecture, where he introduced the noton of [[D-affinity]] and the geometric viewpoint via D-schemes. In the work on Hitchin fibration and Hitchin integrable system (with Drinfel'd) much of technique of algebraic geometry on ind-schemes, including study of D-modules is developed and used. In similar spirit to D-modules, he was also using perverse modules; with [[Ofer Gabber]], Bernstein and Deligne he developed their basic theory including deep and extremely powerful theorem for usage in representation theory, the \textbf{decomposition theorem} (see a survey: \href{http://www.ams.org/bull/2009-46-04/S0273-0979-09-01260-9/S0273-0979-09-01260-9.pdf}{pdf}). On technical side, he also described appropriate gluing procedure for the derived categories of perverse sheaves, involving t-structures. Belinson has shown a remarkable structure of the bounded derived category of coherent sheaves on projective spaces, and its connections to quivers. This work, together with subsequent work with [[Joseph Bernstein]] and also later works of [[Mikhail Kapranov]] and [[Alexei Bondal]] marked the birth of the [[derived noncommutative algebraic geometry]]. With [[Victor Ginzburg]], [[Yuri Manin|Manin]], [[Wolfgang Soergel]] and others, Belinson introduced a wide picture of ``Koszul duality patterns'' in [[representation theory]]. His other works concentrated on [[motives]], [[higher regulators]], [[epsilon-factors]], and so on. \begin{itemize}% \item \href{http://www.math.uchicago.edu/~mitya/langlands.html}{geometric Langlands homepage} \item wikipedia: \href{http://en.wikipedia.org/wiki/Alexander_Beilinson}{Beilinson} \item [[Alexander Beilinson]] \emph{Higher regulators and values of L-functions}, Journal of Soviet Mathematics 30 (1985), 2036-2070, (\href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=intd&paperid=73&option_lang=eng}{mathnet (Russian)}, \href{http://dx.doi.org/10.1007%2FBF02105861}{DOI}) \item [[Alexander Beilinson]], \emph{Higher regulators of curves}, Funct. Anal. Appl. 14 (1980), 116-118, \href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=faa&paperid=1800&option_lang=eng}{mathnet (Russian)}. \item [[Alexander Beilinson]], \emph{Height pairing between algebraic cycles}, in \emph{K-Theory, Arithmetic and Geometry}, Lecture Notes in Mathematics Volume 1289, 1987, pp 1-26, \href{http://dx.doi.org/10.1007/BFb0078364}{DOI}. \item A. Beilinson, J. Bernstein, \emph{Localisations de $\mathfrak{g}$--modules}, C. R. Acad. Sci. Paris \textbf{292} (1981), 15--18. \item A. A. Beilinson, [[V. Drinfeld]], \emph{[[Chiral Algebras]]}, AMS 2004 (a preprint in various forms since around 1995, cf. \href{http://www.math.uchicago.edu/~mitya/langlands.html}{here}). \item A. A. Beilinson, V. Ginzburg, W. Soergel, \emph{Koszul duality patterns in representation theory}, J. Amer. Math. Soc. \textbf{9} (2): 473--527 (1996). \item A. A. Belinson, V. A. Ginsburg, V. V. Schechtman, \emph{Koszul duality}, J. Geom. Phys. \textbf{5} (1988), no. 3, 317--350. \item A. A. Beilinson, J. Bernstein, [[P. Deligne]], \emph{Faisceaux pervers}, Ast\'e{}risque \textbf{100} (1980). \item A. Beilinson, [[Victor Ginzburg|V. Ginzburg]], \emph{[[wall crossing|Wall-crossing]] functors and $D$-modules}, Representation Theory \textbf{3} (electronic), 1--31 (1999) \item A. Belinson, [[J. Bernstein]], \emph{A proof of Jantzen conjectures}, I. M. Gelfand Seminar, 1--50, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc. 1993, \href{http://www.math.harvard.edu/~gaitsgde/grad_2009/BB%20-%20Jantzen.pdf}{pdf} \end{itemize} \hypertarget{related_lab_entries}{}\subsection*{{Related $n$Lab entries}}\label{related_lab_entries} \begin{itemize}% \item [[Deligne-Beilinson cohomology]] \item [[Beilinson regulator]] \item [[Beilinson conjecture]] \item [[derived noncommutative algebraic geometry]] \item [[p-adic Hodge theory]] \end{itemize} [[!redirects Beilinson]] [[!redirects A. A. Beilinson]] [[!redirects A.A. Beilinson]] [[!redirects A. Beilinson]] [[!redirects Sasha Beilinson]] [[!redirects Beĭlinson]] [[!redirects A. A. Beĭlinson]] [[!redirects A. Beĭlinson]] \end{document}