\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{An Introduction to Homological Algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] This entry provides a hyperlinked index for the textbook \begin{itemize}% \item [[Charles Weibel]], \emph{An Introduction to Homological Algebra} Cambridge University Press (1994) \end{itemize} which gives a first exposition to central concepts in \emph{[[homological algebra]]}. For a more comprehensive account of the theory see also chapters 8 and 12-18 of \begin{itemize}% \item [[Masaki Kashiwara]], [[Pierre Schapira]], \emph{[[Categories and Sheaves]]}, Grundlehren der Mathematischen Wissenschaften \textbf{332}, Springer (2006) \end{itemize} and see the $n$Lab lecture notes \begin{itemize}% \item \emph{[[schreiber:Introduction to Homological Algebra]]} ([[IntroductionToHomologicalAlgebra-170509.pdf:file]]) \end{itemize} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{1_chain_complexes}{1 Chain complexes}\dotfill \pageref*{1_chain_complexes} \linebreak \noindent\hyperlink{11_complexes_of_modules}{1.1 Complexes of $R$-modules}\dotfill \pageref*{11_complexes_of_modules} \linebreak \noindent\hyperlink{12_operations_on_chain_complexes}{1.2 Operations on chain complexes}\dotfill \pageref*{12_operations_on_chain_complexes} \linebreak \noindent\hyperlink{13_long_exact_sequences}{1.3 Long exact sequences}\dotfill \pageref*{13_long_exact_sequences} \linebreak \noindent\hyperlink{14_chain_homotopies}{1.4 Chain homotopies}\dotfill \pageref*{14_chain_homotopies} \linebreak \noindent\hyperlink{15_mapping_cones_and_cyclinders}{1.5 Mapping cones and cyclinders}\dotfill \pageref*{15_mapping_cones_and_cyclinders} \linebreak \noindent\hyperlink{16_more_on_abelian_categories}{1.6 More on abelian categories}\dotfill \pageref*{16_more_on_abelian_categories} \linebreak \noindent\hyperlink{2_derived_functors}{2 Derived functors}\dotfill \pageref*{2_derived_functors} \linebreak \noindent\hyperlink{21_functor}{2.1 $\delta$-Functor}\dotfill \pageref*{21_functor} \linebreak \noindent\hyperlink{22_projective_resolutions}{2.2 Projective resolutions}\dotfill \pageref*{22_projective_resolutions} \linebreak \noindent\hyperlink{23_injective_resolutions}{2.3 Injective resolutions}\dotfill \pageref*{23_injective_resolutions} \linebreak \noindent\hyperlink{24_left_derived_functors}{2.4 Left derived functors}\dotfill \pageref*{24_left_derived_functors} \linebreak \noindent\hyperlink{25_right_derived_functors}{2.5 Right derived functors}\dotfill \pageref*{25_right_derived_functors} \linebreak \noindent\hyperlink{26_adjoint_functors_and_leftright_exactness}{2.6 Adjoint functors and left/right exactness}\dotfill \pageref*{26_adjoint_functors_and_leftright_exactness} \linebreak \noindent\hyperlink{27_balancing__and_}{2.7 Balancing $Tor$ and $Ext$}\dotfill \pageref*{27_balancing__and_} \linebreak \noindent\hyperlink{3_tor_and_ext}{3 Tor and Ext}\dotfill \pageref*{3_tor_and_ext} \linebreak \noindent\hyperlink{31__for_abelian_groups}{3.1 $Tor$ for abelian groups}\dotfill \pageref*{31__for_abelian_groups} \linebreak \noindent\hyperlink{32__and_flatness}{3.2 $Tor$ and flatness}\dotfill \pageref*{32__and_flatness} \linebreak \noindent\hyperlink{33__for_nice_rings}{3.3 $Ext$ for nice rings}\dotfill \pageref*{33__for_nice_rings} \linebreak \noindent\hyperlink{34__and_extensions}{3.4 $Ext$ and extensions}\dotfill \pageref*{34__and_extensions} \linebreak \noindent\hyperlink{35_derived_functors_of_the_inverse_limit}{3.5 Derived functors of the inverse limit}\dotfill \pageref*{35_derived_functors_of_the_inverse_limit} \linebreak \noindent\hyperlink{36_universal_coefficient_theorem}{3.6 Universal coefficient theorem}\dotfill \pageref*{36_universal_coefficient_theorem} \linebreak \noindent\hyperlink{4_homological_dimension}{4 Homological dimension}\dotfill \pageref*{4_homological_dimension} \linebreak \noindent\hyperlink{41_dimensions}{4.1 Dimensions}\dotfill \pageref*{41_dimensions} \linebreak \noindent\hyperlink{42_rings_of_small_dimension}{4.2 Rings of Small Dimension}\dotfill \pageref*{42_rings_of_small_dimension} \linebreak \noindent\hyperlink{43_change_of_rings_theorem}{4.3 Change of Rings Theorem}\dotfill \pageref*{43_change_of_rings_theorem} \linebreak \noindent\hyperlink{44_local_rings}{4.4 Local rings}\dotfill \pageref*{44_local_rings} \linebreak \noindent\hyperlink{45_koszul_complexes}{4.5 Koszul Complexes}\dotfill \pageref*{45_koszul_complexes} \linebreak \noindent\hyperlink{46_local_cohomology}{4.6 Local Cohomology}\dotfill \pageref*{46_local_cohomology} \linebreak \noindent\hyperlink{5_spectral_sequences}{5 Spectral sequences}\dotfill \pageref*{5_spectral_sequences} \linebreak \noindent\hyperlink{51_introduction}{5.1 Introduction}\dotfill \pageref*{51_introduction} \linebreak \noindent\hyperlink{52_terminology}{5.2 Terminology}\dotfill \pageref*{52_terminology} \linebreak \noindent\hyperlink{53_lerayserre_spectral_sequence}{5.3 Leray-Serre Spectral Sequence}\dotfill \pageref*{53_lerayserre_spectral_sequence} \linebreak \noindent\hyperlink{54_spectral_sequence_of_a_filtration}{5.4 Spectral sequence of a filtration}\dotfill \pageref*{54_spectral_sequence_of_a_filtration} \linebreak \noindent\hyperlink{55_convergence}{5.5 Convergence}\dotfill \pageref*{55_convergence} \linebreak \noindent\hyperlink{56_spectral_sequence_of_a_double_complex}{5.6 Spectral sequence of a double complex}\dotfill \pageref*{56_spectral_sequence_of_a_double_complex} \linebreak \noindent\hyperlink{57_hypercohomology}{5.7 Hypercohomology}\dotfill \pageref*{57_hypercohomology} \linebreak \noindent\hyperlink{58_grothendieck_spectral_sequence}{5.8 Grothendieck spectral sequence}\dotfill \pageref*{58_grothendieck_spectral_sequence} \linebreak \noindent\hyperlink{59_exact_couples}{5.9 Exact couples}\dotfill \pageref*{59_exact_couples} \linebreak \noindent\hyperlink{6_group_homology_and_cohomology}{6 Group homology and cohomology}\dotfill \pageref*{6_group_homology_and_cohomology} \linebreak \noindent\hyperlink{7_lie_algebra_homology_and_cohomology}{7 Lie algebra homology and cohomology}\dotfill \pageref*{7_lie_algebra_homology_and_cohomology} \linebreak \noindent\hyperlink{8_simplicial_methods_in_homological_algebra}{8 Simplicial methods in homological algebra}\dotfill \pageref*{8_simplicial_methods_in_homological_algebra} \linebreak \noindent\hyperlink{81_simplicial_object}{8.1 Simplicial object}\dotfill \pageref*{81_simplicial_object} \linebreak \noindent\hyperlink{82_operations_on_simplicial_objects}{8.2 Operations on simplicial objects}\dotfill \pageref*{82_operations_on_simplicial_objects} \linebreak \noindent\hyperlink{83_simplicial_homotopy_groups}{8.3 Simplicial homotopy groups}\dotfill \pageref*{83_simplicial_homotopy_groups} \linebreak \noindent\hyperlink{84_the_doldkan_correspondence}{8.4 The Dold-Kan correspondence}\dotfill \pageref*{84_the_doldkan_correspondence} \linebreak \noindent\hyperlink{85_the_eilenbergzilber_theorem}{8.5 The Eilenberg-Zilber theorem}\dotfill \pageref*{85_the_eilenbergzilber_theorem} \linebreak \noindent\hyperlink{86_canonical_resolutions}{8.6 Canonical resolutions}\dotfill \pageref*{86_canonical_resolutions} \linebreak \noindent\hyperlink{87_cotriple_homology}{8.7 Cotriple homology}\dotfill \pageref*{87_cotriple_homology} \linebreak \noindent\hyperlink{88_andrequillen_homology_and_cohomology}{8.8 Andre-Quillen Homology and Cohomology}\dotfill \pageref*{88_andrequillen_homology_and_cohomology} \linebreak \noindent\hyperlink{9_hochschild_and_cyclic_homology}{9 Hochschild and cyclic homology}\dotfill \pageref*{9_hochschild_and_cyclic_homology} \linebreak \noindent\hyperlink{91_hochschild_homology_and_cohomology_of_algebras}{9.1 Hochschild Homology and Cohomology of Algebras}\dotfill \pageref*{91_hochschild_homology_and_cohomology_of_algebras} \linebreak \noindent\hyperlink{92_derivations_differentials_and_separable_algebra}{9.2 Derivations, Differentials and Separable Algebra}\dotfill \pageref*{92_derivations_differentials_and_separable_algebra} \linebreak \noindent\hyperlink{93__extensions_smooth_algebras}{9.3 $H^2$, Extensions, Smooth Algebras}\dotfill \pageref*{93__extensions_smooth_algebras} \linebreak \noindent\hyperlink{94_hochschild_products}{9.4 Hochschild products}\dotfill \pageref*{94_hochschild_products} \linebreak \noindent\hyperlink{95_morita_invariance}{9.5 Morita Invariance}\dotfill \pageref*{95_morita_invariance} \linebreak \noindent\hyperlink{96_cyclic_homology}{9.6 Cyclic Homology}\dotfill \pageref*{96_cyclic_homology} \linebreak \noindent\hyperlink{97_group_rings}{9.7 Group Rings}\dotfill \pageref*{97_group_rings} \linebreak \noindent\hyperlink{98_mixed_complexes}{9.8 Mixed Complexes}\dotfill \pageref*{98_mixed_complexes} \linebreak \noindent\hyperlink{99_graded_algebras}{9.9 Graded Algebras}\dotfill \pageref*{99_graded_algebras} \linebreak \noindent\hyperlink{910_lie_algebras_of_matrices}{9.10 Lie Algebras of Matrices}\dotfill \pageref*{910_lie_algebras_of_matrices} \linebreak \noindent\hyperlink{10_the_derived_category}{10 The derived category}\dotfill \pageref*{10_the_derived_category} \linebreak \noindent\hyperlink{a_category_theory_language}{A Category Theory Language}\dotfill \pageref*{a_category_theory_language} \linebreak \noindent\hyperlink{a1_categories}{A.1 Categories}\dotfill \pageref*{a1_categories} \linebreak \noindent\hyperlink{a2_functors}{A.2 Functors}\dotfill \pageref*{a2_functors} \linebreak \noindent\hyperlink{a3_natural_transformations}{A.3 Natural transformations}\dotfill \pageref*{a3_natural_transformations} \linebreak \noindent\hyperlink{a4_abelian_categories}{A.4 Abelian categories}\dotfill \pageref*{a4_abelian_categories} \linebreak \noindent\hyperlink{a5_limits_and_colimits}{A.5 Limits and colimits}\dotfill \pageref*{a5_limits_and_colimits} \linebreak \noindent\hyperlink{a6_adjoint_functors}{A.6 Adjoint functors}\dotfill \pageref*{a6_adjoint_functors} \linebreak \hypertarget{1_chain_complexes}{}\subsection*{{1 Chain complexes}}\label{1_chain_complexes} \hypertarget{11_complexes_of_modules}{}\subsubsection*{{1.1 Complexes of $R$-modules}}\label{11_complexes_of_modules} \begin{itemize}% \item [[abelian group]], [[commutative ring]], [[module]] \item [[exact sequence]] \end{itemize} \textbf{Definition 1.1.1} [[chain complex]] \begin{itemize}% \item [[chain map]], [[chain homotopy]] \item [[category of chain complexes]] \end{itemize} \textbf{Exercise 1.1.2} \href{chain+map#OnHomology}{homology is functorial} \textbf{Exercise 1.1.3} \href{split+exact+sequence#OfVectorSpaces}{exact sequences of chain complexes are split} \textbf{Exercise 1.1.4} [[internal hom of chain complexes]] \textbf{Definition 1.1.2} [[quasi-isomorphism]] [[cochain complex]], [[bounded chain complex]] \textbf{Exercise 1.1.5} \href{exact+sequence#ExactnessAndQuasiIsomorphisms}{exactness and weak nullity} \textbf{Application 1.1.3} [[chain on a simplicial set]], [[simplicial homology]] \textbf{Exercise 1.17} \href{simplicial+homology#OfTetrahedon}{simplicial homology of the tetrahedron} \textbf{Application 1.1.4} [[singular homology]] \hypertarget{12_operations_on_chain_complexes}{}\subsubsection*{{1.2 Operations on chain complexes}}\label{12_operations_on_chain_complexes} \begin{itemize}% \item [[additive and abelian categories]] \item [[Ab-enriched category]] \begin{itemize}% \item [[pre-additive category]] \item [[additive category]], \begin{itemize}% \item [[additive functor]] \end{itemize} \end{itemize} \end{itemize} \textbf{Exercise 1.2.1} \href{chain+homology+and+cohomology#ChainHomologyRespectsDirectProduct}{homology respects direct product} \textbf{Definition 1.2.1} [[kernel]], [[cokernel]] \begin{itemize}% \item [[quotient]] \end{itemize} \textbf{Exercise 1.2.2} \href{Mod#RModIsAbelian}{in an abelian category kernels/cokernels are the monos/epis} \textbf{Exercise 1.2.3} \href{category+of+chain+complexes#KernelsOfChainComplexes}{(co)kernels of chain maps are degreewise (co)kernels} \textbf{Definition 1.2.2} [[abelian category]], [[abelian subcategory]] \textbf{Theorem 1.2.3} \href{category+of+chain+complexes#IsAbelian}{a category of chain complexes is itself abelian} \textbf{Exercise 1.2.4} \href{category+of+chain+complexes#ShortExactSequencesDegreewise}{exact sequence of chain complexes is degreewise exact} $R$[[Mod]] \textbf{Example 1.2.4} [[double complex]] \textbf{Sing trick 1.2.5} \href{double+complex#EquivalenceOfTheTwoDefinitions}{double complex with commuting/anti-commuting differentials} \textbf{Total complex 1.2.6} [[total complex]] \textbf{Exercise 1.2.5} \href{total+complex#TotOfBoundedDegreewiseExactIsExact}{total complex of a bounded degreewise exact double complex is itself exact} \textbf{Example 1.2.4} [[double complex]] \textbf{Truncations 1.2.7} [[truncation of a chain complex]] \textbf{Translation 1.2.8} [[suspension of a chain complex]] \textbf{Exercise 1.2.8} [[mapping cone]] \hypertarget{13_long_exact_sequences}{}\subsubsection*{{1.3 Long exact sequences}}\label{13_long_exact_sequences} \textbf{Theorem 1.3.1} [[connecting homomorphism]], [[long exact sequences in homology]] \textbf{Exercise 1.3.1} [[3x3 lemma]], \textbf{Snake lemma 1.3.2} [[snake lemma]] \textbf{Exercise 1.3.3} [[5 lemma]] \textbf{Remark 1.3.5} [[exact triangle]] \hypertarget{14_chain_homotopies}{}\subsubsection*{{1.4 Chain homotopies}}\label{14_chain_homotopies} \begin{itemize}% \item [[homotopy theory]] \end{itemize} \textbf{Definition 1.4.1} [[split exact sequence]] \textbf{Exercise 1.4.1} \href{split+exact+sequence#OfVectorSpaces}{splitness of exact sequences of free modules} \textbf{Definition 1.4.3} [[null homotopy]] \textbf{Exercise 1.4.3} \href{split+exact+sequence#RelationToChainHomotopy}{split exact means identity is null homotopic} \textbf{Definition 1.4.4} [[chain homotopy]] \textbf{Lemma 1.4.5} \href{chain%20map#OnHomology}{chain homotopy respects homology} \textbf{Exercise 1.4.5} [[homotopy category of chain complexes]] \hypertarget{15_mapping_cones_and_cyclinders}{}\subsubsection*{{1.5 Mapping cones and cyclinders}}\label{15_mapping_cones_and_cyclinders} \textbf{1.5.1} [[mapping cone]] \textbf{1.5.5} [[mapping cylinder]] \textbf{1.5.8} [[fiber sequence]] \hypertarget{16_more_on_abelian_categories}{}\subsubsection*{{1.6 More on abelian categories}}\label{16_more_on_abelian_categories} \textbf{Theorem 1.6.1} [[Freyd-Mitchell embedding theorem]] \textbf{Functor categories 1.6.4} [[functor category]] [[presheaf]] \textbf{Definition 1.6.5} [[abelian sheaf]] \textbf{Definition 1.6.6} left/right [[exact functor]] \textbf{Yoneda embedding 1.6.10} [[Yoneda embedding]] \textbf{Yoneda lemma 1.6.11} [[Yoneda lemma]] \href{http://ncatlab.org/nlab/show/Freyd-Mitchell+embedding+theorem#Proof}{proof of the Freyd-Mitchell embedding theorem} \hypertarget{2_derived_functors}{}\subsection*{{2 Derived functors}}\label{2_derived_functors} [[derived functor in homological algebra]] \hypertarget{21_functor}{}\subsubsection*{{2.1 $\delta$-Functor}}\label{21_functor} \textbf{Definition 2.1.1} [[delta-functor]] \hypertarget{22_projective_resolutions}{}\subsubsection*{{2.2 Projective resolutions}}\label{22_projective_resolutions} [[projective module]] ([[cofibrant object]] in the [[model structure on chain complexes]]) \textbf{Definition 2.2.4} [[projective resolution]] ([[cofibrant replacement]]) \textbf{Horseshoe lemma 2.2.8} [[horseshoe lemma]] \hypertarget{23_injective_resolutions}{}\subsubsection*{{2.3 Injective resolutions}}\label{23_injective_resolutions} [[injective module]] ([[fibrant object]] in the other [[model structure on chain complexes]]) \textbf{Baer's criterion 2.3.1} [[Baer's criterion]] \textbf{Definition 2.3.5} [[injective resolution]] ([[fibrant replacement]]) \textbf{Definition 2.3.9} [[adjoint functor]] \hypertarget{24_left_derived_functors}{}\subsubsection*{{2.4 Left derived functors}}\label{24_left_derived_functors} [[left derived functor]] \hypertarget{25_right_derived_functors}{}\subsubsection*{{2.5 Right derived functors}}\label{25_right_derived_functors} [[right derived functor]] \textbf{Application 2.5.4} [[global section functor]], [[abelian sheaf cohomology]] \hypertarget{26_adjoint_functors_and_leftright_exactness}{}\subsubsection*{{2.6 Adjoint functors and left/right exactness}}\label{26_adjoint_functors_and_leftright_exactness} [[adjoint functor]] \textbf{Definition 2.6.4} [[Tor]] \textbf{Application 2.6.5} [[sheafification]] \textbf{Application 2.6.6} [[direct image]], [[inverse image]] \textbf{Application 2.6.7} [[colimit]] \textbf{Variation 2.6.9} [[limit]] \textbf{Definition 2.6.13} [[filtered category]], [[filtered colimit]] \hypertarget{27_balancing__and_}{}\subsubsection*{{2.7 Balancing $Tor$ and $Ext$}}\label{27_balancing__and_} \textbf{Tensor product of complexes 2.7.1} [[tensor product of chain complexes]] \textbf{Lemma 2.7.3} [[acyclic assembly lemma]] \hypertarget{3_tor_and_ext}{}\subsection*{{3 Tor and Ext}}\label{3_tor_and_ext} [[Tor]] and [[Ext]] \hypertarget{31__for_abelian_groups}{}\subsubsection*{{3.1 $Tor$ for abelian groups}}\label{31__for_abelian_groups} \textbf{Proposition 3.1.2-3.1.3} \href{Tor#RelationToTorsionGroups}{relation to torsion subgroups} \hypertarget{32__and_flatness}{}\subsubsection*{{3.2 $Tor$ and flatness}}\label{32__and_flatness} \textbf{Definition 3.2.1} [[flat module]] \textbf{Definition 3.2.3} [[Pontrjagin duality]] \textbf{Flat resolution lemma 3.2.8} [[flat resolution lemma]] \textbf{Corollary 3.2.13} \href{Tor#Localization}{Localization for Tor} \hypertarget{33__for_nice_rings}{}\subsubsection*{{3.3 $Ext$ for nice rings}}\label{33__for_nice_rings} \textbf{Corollary 3.3.11} \href{Ext#Localization}{Localization for Ext} \hypertarget{34__and_extensions}{}\subsubsection*{{3.4 $Ext$ and extensions}}\label{34__and_extensions} [[extension]] [[group extension]] \textbf{Vista 3.4.6} [[Yoneda extension group]] \hypertarget{35_derived_functors_of_the_inverse_limit}{}\subsubsection*{{3.5 Derived functors of the inverse limit}}\label{35_derived_functors_of_the_inverse_limit} [[tower]] [[additive and abelian categories|(AB4)-category]] [[directed limit]] \textbf{Definition 3.5.1} [[lim{\tt \symbol{94}}1]] \textbf{Definition 3.5.6} [[Mittag-Leffler condition]] \textbf{Exercise 3.5.5} [[pullback]] \hypertarget{36_universal_coefficient_theorem}{}\subsubsection*{{3.6 Universal coefficient theorem}}\label{36_universal_coefficient_theorem} \textbf{Theorem 2.6.1} [[Künneth formula]] \textbf{Universal cofficient theorem for homology 3.6.2} \href{universal+coefficient+theorem#InHomology}{universal coefficient theorem in homology} \textbf{Theorem 3.6.3} [[Künneth formula for complexes]] \textbf{Application 3.6.4} \href{universal+coefficient+theorem#InTopology}{universal coefficient theorem in topology} \textbf{Universal coefficient theorem in cohomology 3.6.5} \href{universal+coefficient+theorem#InCohomology}{universal coefficient theorem in cohomology} [[Eilenberg-Zilber theorem]] \textbf{Exercise 3.6.2} [[hereditary ring]] \hypertarget{4_homological_dimension}{}\subsection*{{4 Homological dimension}}\label{4_homological_dimension} \hypertarget{41_dimensions}{}\subsubsection*{{4.1 Dimensions}}\label{41_dimensions} \begin{itemize}% \item [[dimension]] \item [[global dimension theorem]] \item [[homological dimension]] \end{itemize} \hypertarget{42_rings_of_small_dimension}{}\subsubsection*{{4.2 Rings of Small Dimension}}\label{42_rings_of_small_dimension} \hypertarget{43_change_of_rings_theorem}{}\subsubsection*{{4.3 Change of Rings Theorem}}\label{43_change_of_rings_theorem} \hypertarget{44_local_rings}{}\subsubsection*{{4.4 Local rings}}\label{44_local_rings} \begin{itemize}% \item [[local ring]] \end{itemize} \hypertarget{45_koszul_complexes}{}\subsubsection*{{4.5 Koszul Complexes}}\label{45_koszul_complexes} \begin{itemize}% \item [[Koszul complex]] \end{itemize} \hypertarget{46_local_cohomology}{}\subsubsection*{{4.6 Local Cohomology}}\label{46_local_cohomology} \hypertarget{5_spectral_sequences}{}\subsection*{{5 Spectral sequences}}\label{5_spectral_sequences} \hypertarget{51_introduction}{}\subsubsection*{{5.1 Introduction}}\label{51_introduction} \hypertarget{52_terminology}{}\subsubsection*{{5.2 Terminology}}\label{52_terminology} \begin{itemize}% \item [[spectral sequence]] \end{itemize} \hypertarget{53_lerayserre_spectral_sequence}{}\subsubsection*{{5.3 Leray-Serre Spectral Sequence}}\label{53_lerayserre_spectral_sequence} \begin{itemize}% \item [[Leray-Serre spectral sequence]] \end{itemize} \hypertarget{54_spectral_sequence_of_a_filtration}{}\subsubsection*{{5.4 Spectral sequence of a filtration}}\label{54_spectral_sequence_of_a_filtration} \begin{itemize}% \item [[spectral sequence of a filtration]] \end{itemize} \hypertarget{55_convergence}{}\subsubsection*{{5.5 Convergence}}\label{55_convergence} \hypertarget{56_spectral_sequence_of_a_double_complex}{}\subsubsection*{{5.6 Spectral sequence of a double complex}}\label{56_spectral_sequence_of_a_double_complex} \begin{itemize}% \item [[spectral sequence of a double complex]] \end{itemize} \hypertarget{57_hypercohomology}{}\subsubsection*{{5.7 Hypercohomology}}\label{57_hypercohomology} \begin{itemize}% \item [[hypercohomology]] \end{itemize} \hypertarget{58_grothendieck_spectral_sequence}{}\subsubsection*{{5.8 Grothendieck spectral sequence}}\label{58_grothendieck_spectral_sequence} \begin{itemize}% \item [[Grothendieck spectral sequence]] \end{itemize} \hypertarget{59_exact_couples}{}\subsubsection*{{5.9 Exact couples}}\label{59_exact_couples} \begin{itemize}% \item [[exact couple]] \item [[Bockstein spectral sequence]] \end{itemize} \hypertarget{6_group_homology_and_cohomology}{}\subsection*{{6 Group homology and cohomology}}\label{6_group_homology_and_cohomology} \begin{itemize}% \item [[group cohomology]] \end{itemize} \hypertarget{7_lie_algebra_homology_and_cohomology}{}\subsection*{{7 Lie algebra homology and cohomology}}\label{7_lie_algebra_homology_and_cohomology} \begin{itemize}% \item [[Lie algebra homology]], [[Lie algebra cohomology]] \end{itemize} \hypertarget{8_simplicial_methods_in_homological_algebra}{}\subsection*{{8 Simplicial methods in homological algebra}}\label{8_simplicial_methods_in_homological_algebra} \hypertarget{81_simplicial_object}{}\subsubsection*{{8.1 Simplicial object}}\label{81_simplicial_object} \begin{itemize}% \item [[simplicial object]] \end{itemize} \hypertarget{82_operations_on_simplicial_objects}{}\subsubsection*{{8.2 Operations on simplicial objects}}\label{82_operations_on_simplicial_objects} \hypertarget{83_simplicial_homotopy_groups}{}\subsubsection*{{8.3 Simplicial homotopy groups}}\label{83_simplicial_homotopy_groups} \begin{itemize}% \item [[simplicial homotopy group]] \end{itemize} \hypertarget{84_the_doldkan_correspondence}{}\subsubsection*{{8.4 The Dold-Kan correspondence}}\label{84_the_doldkan_correspondence} \begin{itemize}% \item [[Dold-Kan correspondence]] \end{itemize} \hypertarget{85_the_eilenbergzilber_theorem}{}\subsubsection*{{8.5 The Eilenberg-Zilber theorem}}\label{85_the_eilenbergzilber_theorem} \begin{itemize}% \item [[Eilenberg-Zilber theorem]] \end{itemize} \hypertarget{86_canonical_resolutions}{}\subsubsection*{{8.6 Canonical resolutions}}\label{86_canonical_resolutions} \begin{itemize}% \item [[monad]](=triple) [[comonad]] [[bar construction]], [[classifying space]] \end{itemize} \hypertarget{87_cotriple_homology}{}\subsubsection*{{8.7 Cotriple homology}}\label{87_cotriple_homology} \begin{itemize}% \item [[bar construction]] \item [[monadic descent]] \end{itemize} \hypertarget{88_andrequillen_homology_and_cohomology}{}\subsubsection*{{8.8 Andre-Quillen Homology and Cohomology}}\label{88_andrequillen_homology_and_cohomology} \begin{itemize}% \item [[Kähler differential]] \item [[cotangent complex]] \end{itemize} \hypertarget{9_hochschild_and_cyclic_homology}{}\subsection*{{9 Hochschild and cyclic homology}}\label{9_hochschild_and_cyclic_homology} \hypertarget{91_hochschild_homology_and_cohomology_of_algebras}{}\subsubsection*{{9.1 Hochschild Homology and Cohomology of Algebras}}\label{91_hochschild_homology_and_cohomology_of_algebras} \begin{itemize}% \item [[Hochschild cohomology]] \end{itemize} \hypertarget{92_derivations_differentials_and_separable_algebra}{}\subsubsection*{{9.2 Derivations, Differentials and Separable Algebra}}\label{92_derivations_differentials_and_separable_algebra} \begin{itemize}% \item [[derivation]] \item [[differential]] \item [[separable algebra]] \end{itemize} \hypertarget{93__extensions_smooth_algebras}{}\subsubsection*{{9.3 $H^2$, Extensions, Smooth Algebras}}\label{93__extensions_smooth_algebras} \begin{itemize}% \item [[smooth algebra]] \end{itemize} \hypertarget{94_hochschild_products}{}\subsubsection*{{9.4 Hochschild products}}\label{94_hochschild_products} \begin{itemize}% \item [[Hochschild-Kostant-Rosenberg theorem]] \end{itemize} \hypertarget{95_morita_invariance}{}\subsubsection*{{9.5 Morita Invariance}}\label{95_morita_invariance} \hypertarget{96_cyclic_homology}{}\subsubsection*{{9.6 Cyclic Homology}}\label{96_cyclic_homology} \begin{itemize}% \item [[cyclic cohomology]] \end{itemize} \hypertarget{97_group_rings}{}\subsubsection*{{9.7 Group Rings}}\label{97_group_rings} \hypertarget{98_mixed_complexes}{}\subsubsection*{{9.8 Mixed Complexes}}\label{98_mixed_complexes} \hypertarget{99_graded_algebras}{}\subsubsection*{{9.9 Graded Algebras}}\label{99_graded_algebras} \hypertarget{910_lie_algebras_of_matrices}{}\subsubsection*{{9.10 Lie Algebras of Matrices}}\label{910_lie_algebras_of_matrices} \hypertarget{10_the_derived_category}{}\subsection*{{10 The derived category}}\label{10_the_derived_category} \begin{itemize}% \item [[derived category]] \end{itemize} \hypertarget{a_category_theory_language}{}\subsection*{{A Category Theory Language}}\label{a_category_theory_language} \begin{itemize}% \item [[category theory]] \end{itemize} \hypertarget{a1_categories}{}\subsubsection*{{A.1 Categories}}\label{a1_categories} \begin{itemize}% \item [[category]] \end{itemize} \hypertarget{a2_functors}{}\subsubsection*{{A.2 Functors}}\label{a2_functors} \begin{itemize}% \item [[functor]] \end{itemize} \hypertarget{a3_natural_transformations}{}\subsubsection*{{A.3 Natural transformations}}\label{a3_natural_transformations} \begin{itemize}% \item [[natural transformation]] \end{itemize} \hypertarget{a4_abelian_categories}{}\subsubsection*{{A.4 Abelian categories}}\label{a4_abelian_categories} \begin{itemize}% \item [[abelian category]] \end{itemize} \hypertarget{a5_limits_and_colimits}{}\subsubsection*{{A.5 Limits and colimits}}\label{a5_limits_and_colimits} \begin{itemize}% \item [[limit]], [[colimit]] \end{itemize} \hypertarget{a6_adjoint_functors}{}\subsubsection*{{A.6 Adjoint functors}}\label{a6_adjoint_functors} \begin{itemize}% \item [[adjoint functor]] \end{itemize} category: reference [[!redirects An introduction to homological algebra]] \end{document}