\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Artin-Mazur formal group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{formal_geometry}{}\paragraph*{{Formal geometry}}\label{formal_geometry} [[!include formal geometry -- contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{deformations_of_higher_line_bundles_of_cohomology}{Deformations of higher line bundles (of $H^n(-,\mathbb{G}_m)$-cohomology)}\dotfill \pageref*{deformations_of_higher_line_bundles_of_cohomology} \linebreak \noindent\hyperlink{DeformationsOfDeligneCohomology}{Deformations of higher line bundles with connection (of Deligne cohomology)}\dotfill \pageref*{DeformationsOfDeligneCohomology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{OfCalabiYauVarieties}{Of Calabi-Yau varieties}\dotfill \pageref*{OfCalabiYauVarieties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Every [[variety]] in [[positive characteristic]] has a [[formal group]] attached to it, called the \emph{Artin-Mazur formal group}. This group is often related to arithmetic properties of the variety such as being ordinary or supersingular. The Artin-Mazur formal group in dimension $n$ is a [[formal group]] version of the [[Picard infinity-group|Picard n-group]] of flat/holomorphic [[circle n-bundles]] on the given variety. Therefore for $n = 1$ one also speaks of the \emph{[[formal Picard group]]} and for $n = 2$ of the \emph{[[formal Brauer group]]}. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{deformations_of_higher_line_bundles_of_cohomology}{}\subsubsection*{{Deformations of higher line bundles (of $H^n(-,\mathbb{G}_m)$-cohomology)}}\label{deformations_of_higher_line_bundles_of_cohomology} Let $X$ be a [[smooth scheme|smooth]] [[proper scheme|proper]] $n$ [[dimension|dimensional]] [[variety]] over an [[algebraically closed field]] $k$ of [[positive number|positive]] [[characteristic]] $p$. Writing $\mathbb{G}_m$ for the [[multiplicative group]] and $H_{et}^\bullet(-,-)$ for [[etale cohomology]], then $H_{et}^n(X,\mathbb{G}_m)$ classifies $\mathbb{G}_m$-[[principal infinity-bundle|principal n-bundles]] ([[line n-bundles]], [[bundle 2-gerbe|bundle (n-1)-gerbes]]) on $X$. Notice that, by the discussion at \emph{\href{Brauer%20group#RelationToEtaleCohomology}{Brauer group -- relation to \'e{}tale cohomology}}, for $n = 1$ this is the [[Picard group]] while for $n = 2$ this contains (as a [[torsion subgroup]]) the [[Brauer group]] of $X$. Accordingly, for each [[Artin algebra]] regarded as an [[infinitesimally thickened point]] $S \in ArtAlg_k^{op}$ the [[cohomology group]] $H_{et}^n(X\times_{Spec(k)} S,\mathbb{G}_m)$ is that of [[equivalence classes]] of $\mathbb{G}_n$-[[principal infinity-bundle|principal n-bundles]] on a formal thickening of $X$. The defining inclusion $\ast \to S$ of the unique global point induces a restriction map $H^n_{et}(X\times_{Spec(k)} S, \mathbb{G}_m)\to H^n_{et}(X, \mathbb{G}_m))$ which restricts an $n$-bundle on the formal thickening to just $X$ itself. The [[kernel]] of this map hence may be thought of as the group of $S$-parameterized infinitesimal [[deformations]] of the trivial $\mathbb{G}_m$-$n$-bundle on $X$. (For $n = 1$ this is an [[infinitesimal neighbourhood]] of the neutral element in the [[Picard scheme]] $Pic_X$, for higher $n$ one will need to genuinely speak about [[Picard stacks]] and higher stacks.) As $S$ varies, these groups of deformations naturally form a [[presheaf]] on ``[[infinitesimally thickened points]]'' ([[Isbell duality|formal duals]] to [[Artin algebras]]). \begin{defn} \label{}\hypertarget{}{} For $X$ an [[algebraic variety]] as above, write \begin{displaymath} \Phi_X^n \;\colon\; ArtAlg_k \to Grp \end{displaymath} \begin{displaymath} \Phi_X^n(S) \coloneqq \mathrm{ker}(H^n_{et}(X\times_{Spec(k)} S, \mathbb{G}_m)\to H^n_{et}(X, \mathbb{G}_m)) \,. \end{displaymath} \end{defn} (\hyperlink{ArtinMazur77}{Artin-Mazur 77, II.1 ``Main examples''}) The fundamental result of (\hyperlink{ArtinMazur77}{Artin-Mazur 77, II}) is that under the above hypotheses this presheaf is [[prorepresentable functor|pro-representable]] by a [[formal group]], which we may hence also denote by $\Phi_X^n$. This is called the \textbf{Artin-Mazur formal group} of $X$ in degree $n$. More in detail: \begin{prop} \label{SufficientConditionsForRepresentability}\hypertarget{SufficientConditionsForRepresentability}{} Let $X$ be an [[algebraic variety]] [[proper morphism|proper]] over an [[algebraically closed field]] $k$ of [[positive number|positive]] [[characteristic]]. A sufficient condition for $\Phi_X^k$ to be [[prorepresentable functor|pro-representable]] by a [[formal group]] is that $\Phi_X^{k-1}$ is [[formally smooth morphism|formally smooth]]. In particular if $dim H^{k-1}(X,\mathcal{O}_X) = 0$ then $\Phi^{k-1}(X)$ vanishes, hence is trivially formally smooth, hence $\Phi^k(X)$ is representable \end{prop} The first statement appears as (\hyperlink{ArtinMazur77}{Artin-Mazur 77, corollary (2.12)}). The second as (\hyperlink{ArtinMazur77}{Artin-Mazur 77, corollary (4.2)}). \begin{remark} \label{Dimension}\hypertarget{Dimension}{} The [[dimension]] of $\Phi^k_X$ is \begin{displaymath} dim(\Phi^k_X) = dim H^k(X,\mathcal{O}_X) \,. \end{displaymath} \end{remark} (\hyperlink{ArtinMazur77}{Artin-Mazur 77, II.4}). \hypertarget{DeformationsOfDeligneCohomology}{}\subsubsection*{{Deformations of higher line bundles with connection (of Deligne cohomology)}}\label{DeformationsOfDeligneCohomology} In (\hyperlink{ArtinMazur77}{Artin-Mazur 77, section III}) is also discussed the formal [[deformation theory]] of [[line n-bundles with connection]] (classified by [[ordinary differential cohomology]], being [[hypercohomology]] with [[coefficients]] in the [[Deligne complex]]). Under suitable conditions this yields a [[formal group]], too. Notice that by the discussion at \emph{\href{http://ncatlab.org/nlab/show/intermediate%20Jacobian#CharacterizationAsHodgeTrivialDeligneCohomology}{intermediate Jacobian -- Characterization as Hodge-trivial Deligne cohomology}} the formal deformation theory of Deligne cohomology yields the formal completion of [[intermediate Jacobians]] (all in suitable degree). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{remark} \label{}\hypertarget{}{} \begin{itemize}% \item For a [[curve]] $X$ (i.e. $dim(X)= 1$), the Artin-Mazur group is often called the \textbf{[[formal Picard group]]} $\widehat{\mathrm{Pic}}$. \item For a [[surface]] $X$ (i.e. $dim(X) =2$), the Artin-Mazur group is called the \textbf{[[formal Brauer group]]} $\widehat{Br}$. \end{itemize} \end{remark} \hypertarget{OfCalabiYauVarieties}{}\subsubsection*{{Of Calabi-Yau varieties}}\label{OfCalabiYauVarieties} \begin{example} \label{AMfgOfStrictCalabiYau}\hypertarget{AMfgOfStrictCalabiYau}{} Let $X$ be a strict [[Calabi-Yau variety]] in [[positive characteristic]] of [[dimension]] $n$ (strict meaning that the [[Hodge numbers]] $h^{0,r} = 0$ vanish for $0 \lt r \lt n$, i.e. over the [[complex numbers]] that the [[holonomy group]] exhausts $SU(n)$, this is for instance the case of relevance for [[supersymmetry]], see at \emph{[[supersymmetry and Calabi-Yau manifolds]]}). By prop. \ref{SufficientConditionsForRepresentability} this means that the Artin-Mazur formal group $\Phi^n_X$ exists. Since moreover $h^{0,n} = 1$ it follows by remark \ref{Dimension} that it is of [[dimension]] 1 \end{example} For discussion of $\Phi_X^n$ for [[Calabi-Yau varieties]] $X$ of [[dimension]] $n$ and in [[positive number|positive]] [[characteristic]] see (\hyperlink{GeerKatsura03}{Geer-Katsura 03}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[formal group]] \item [[height of a variety]] \end{itemize} [[!include moduli of higher lines -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[Michael Artin]], [[Barry Mazur]], \emph{Formal Groups Arising from Algebraic Varieties}, Annales scientifiques de l'\'E{}cole Normale Sup\'e{}rieure, S\'e{}r. 4, 10 no. 1 (1977), p. 87-131 \href{http://www.numdam.org/item?id=ASENS_1977_4_10_1_87_0}{numdam}, \href{http://www.ams.org/mathscinet-getitem?mr=56:15663}{MR56:15663} \end{itemize} Further developments are in \begin{itemize}% \item [[Jan Stienstra]], \emph{Formal group laws arising from algebraic varieties}, American Journal of Mathematics, Vol. 109, No.5 (1987), 907-925 (\href{http://www.math.rochester.edu/people/faculty/doug/otherpapers/stienstra1.pdf}{pdf}) \end{itemize} Lecture notes touching on the cases $n = 1$ and $n = 2$ include \begin{itemize}% \item Christian Liedtke, example 6.13 in \emph{Lectures on Supersingular K3 Surfaces and the Crystalline Torelli Theorem} (\href{http://arxiv.org/abs/1403.2538}{arXiv.1403.2538}) \end{itemize} Discussion of Artin-Mazur formal groups for all $n$ and of [[Calabi-Yau varieties]] of [[positive number|positive]] [[characteristic]] in [[dimension]] $n$ is in \begin{itemize}% \item [[Gerard van der Geer]], T. Katsura, \emph{On the height of Calabi-Yau varieties in positive characteristic}, Documenta Math. 8. 97-113 (2003) (\href{http://arxiv.org/abs/math/0302023}{arXiv:math/0302023}) \end{itemize} [[!redirects Artin-Mazur formal group]] [[!redirects Artin-Mazur formal groups]] [[!redirects Artin–Mazur formal group]] [[!redirects Artin–Mazur formal groups]] [[!redirects Artin--Mazur formal group]] [[!redirects Artin--Mazur formal groups]] \end{document}