\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Atiyah 2-framing} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToBounding4Manifolds}{Relation to bounding 4-manifolds}\dotfill \pageref*{RelationToBounding4Manifolds} \linebreak \noindent\hyperlink{RelationToStringStructures}{Relation to String-structures}\dotfill \pageref*{RelationToStringStructures} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In the general terminology of \emph{$n$-[[framing]]} then a \emph{2-framing} of a [[manifold]] $\Sigma$ of [[dimension]] $d \leq 2$ is a trivialization of $T \Sigma \oplus \mathbb{R}^{2-d}$. In (\hyperlink{Atiyah1990}{Atiyah 90}) the term ``2-framing'' is instead used for a trivialization of the double of the tangent bundle of a 3-manifold. So this is a different concept, but it turns out to be closely related to the \emph{3-framing} (in the previous sense) of surfaces. For $X$ a [[compact space|compact]], [[connected]], [[orientation|oriented]] 3-[[dimension|dimensional]] [[manifold]], write \begin{displaymath} 2 T X := T X \oplus T X \end{displaymath} for the [[direct sum of vector bundles|fiberwise direct sum]] of the [[tangent bundle]] with itself. Via the [[diagonal]] embedding \begin{displaymath} SO(3) \to SO(3) \times SO(3) \hookrightarrow SO(6) \end{displaymath} this naturally induces a [[special orthogonal group|SO(6)]]-[[principal bundle]]. \begin{prop} \label{}\hypertarget{}{} The underlying $SO(6)$-principal bundle of $2 T X$ always admits a [[lift of structure group|lift]] to a [[spin group|spin(6)]]-[[principal bundle]]. \end{prop} \begin{proof} By the sum-rule for [[Stiefel-Whitney classes]] (see at \href{Stiefel-Whitney+class#AxiomaticDefinition}{SW class -- Axiomatic definition}) we have that \begin{displaymath} w_2(2 T X) = 2 w_0(T X) \cup w_2(T X) + w_1(T X) w_1(T X) \,. \end{displaymath} Since $T X$ is assumed [[orientation|oriented]], $w_1(T X) = 0$ (since this is the [[obstruction]] to having an [[orientation]]). So $w_2(2 T X) = 0 \in H^2(X,\mathbb{Z}_2)$ and since this in turn is the further [[obstruction]] to having a [[spin structure]], this does exist. \end{proof} Therefore the following definition makes sense \begin{defn} \label{}\hypertarget{}{} A \textbf{2-framing} in the sense of (\hyperlink{Atiyah1990}{Atiyah 90}) on a [[compact space|compact]], [[connected]], [[orientation|oriented]] 3-[[dimension|dimensional]] [[manifold]] $X$ is the [[homotopy class]] of a trivializations of the [[spin-group]]-[[principal bundle]] underlying [[Whitney sum|twice]] its [[tangent bundle]]. \end{defn} More in detail, we may also remember the [[groupoid]] of 2-framings and the smooth structure on collections of them: \begin{defn} \label{}\hypertarget{}{} The [[moduli stack]] $At2\mathbf{Frame}$ is the [[homotopy pullback]] in \begin{displaymath} \itexarray{ At2\mathbf{Frame} &\to& * \\ \downarrow && \downarrow \\ \mathbf{B}SO(3) &\stackrel{}{\to}& \mathbf{B} Spin(6) } \end{displaymath} in [[Smooth∞Grpd]]. \end{defn} In terms of this a 2-framing on $X$ with [[orientation]] $\mathbf{o} \colon X \to \mathbf{B}SO(3)$ is a lift $\hat {\mathbf{o}}$ in \begin{displaymath} \itexarray{ && At 2 \mathbf{Frame} \\ & {}^{\mathllap{\hat {\mathbf{o}}}}\nearrow & \downarrow \\ X &\stackrel{\mathbf{o}}{\to}& \mathbf{B}SO(3) } \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToBounding4Manifolds}{}\subsubsection*{{Relation to bounding 4-manifolds}}\label{RelationToBounding4Manifolds} In (\hyperlink{Atiyah1990}{Atiyah}) it is shown how a framing on a compact connected oriented 3-manifold $X$ is induced by a 4-manifold $Z$ with [[boundary]] $\partial Z \simeq X$. In fact, a framing is equivalently a choice of [[cobordism]] class of bounding 4-manifolds (\hyperlink{Kerler}{Kerler}). Discussion of 2-framing entirely in terms of bounding 4-manifolds is for instance in (\hyperlink{Sawin}{Sawin}). \hypertarget{RelationToStringStructures}{}\subsubsection*{{Relation to String-structures}}\label{RelationToStringStructures} By (\hyperlink{Atiyah1990}{Atiyah 2.1}) an Atiyah 2-framing of a 3-manifold $X$ is equivalently a\newline $p_1$-[[twisted differential c-structures|structure]], where $p_1$ is the first [[Pontryagin class]], hence is a homotopy class of a trivialization of \begin{displaymath} p_1(X) \colon X \to B SO(3) \stackrel{p_1}{\to} K(\mathbb{Z},4) \,. \end{displaymath} This perspective on Atiyah 2-framings is made explicit in (\hyperlink{BunkeNaumann}{Bunke-Naumann, section 2.3}). It is mentioned for instance also in (\hyperlink{Freed08}{Freed, page 6, slide 5}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[framed manifold]] \item [[p1-structure]], [[string structure]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of ``2-framing'' in the sense of framing of the double of the tangent bundle is due to \begin{itemize}% \item [[Michael Atiyah]], \emph{On framings of 3-manifolds} , Topology, Vol. 29, No 1, pp. 1-7 (1990) (\href{http://www.maths.ed.ac.uk/~aar/papers/atiyahfr.pdf}{pdf}) \end{itemize} making explicit a structure which slightly implicit in the discussion of the [[perturbation theory|perturbative]] [[path integral]] [[quantization of 3d Chern-Simons theory]] in \begin{itemize}% \item [[Edward Witten]], \emph{Quantum field theory and the Jones Polynomial} , Comm. Math. Phys. 121 (1989) \end{itemize} reviewed for instance in \begin{itemize}% \item M. B. Young, section 2 of \emph{Chern-Simons theory, knots and moduli spaces of connections} (\href{http://www.math.sunysb.edu/~myoung/CS.pdf}{pdf}) \end{itemize} (see \hyperlink{Atiyah}{Atiyah, page 6}). For more on the role of 2-framings in [[Chern-Simons theory]] see also \begin{itemize}% \item [[Daniel Freed]], Robert Gompf, \emph{Computer calculation of Witten's 3-Manifold invariant}, Commun. Math. Phys. 141,79-117 (1991) (\href{http://www.maths.ed.ac.uk/~aar/papers/freedgompf.pdf}{pdf}) \item [[Gregor Masbaum]], section 2 of \emph{Spin TQFT and the Birman-Craggs Homomorphism}, Tr. J. of Mathematics 19 (1995) \href{http://journals.tubitak.gov.tr/math/issues/mat-95-19-2/pp-189-199.pdf}{pdf} \item [[Daniel Freed]], \emph{Remarks on Chern-Simons theory} (\href{http://arxiv.org/abs/0808.2507}{arXiv:0808.2507}, \href{http://www.ma.utexas.edu/users/dafr/MSRI_25.pdf}{pdf slides}) \end{itemize} and for discussion in the context of the [[M2-brane]] from p. 7 on in \begin{itemize}% \item [[Hisham Sati]], \emph{[[Geometric and topological structures related to M-branes]] II: Twisted $String$ and $String^c$-structures} (\href{http://arxiv.org/abs/1007.5419}{arXiv:1007.5419}). \end{itemize} The relation to $p_1$-structure is made explicit in \begin{itemize}% \item [[Ulrich Bunke]], [[Niko Naumann]], section 2.3 of \emph{Secondary Invariants for String Bordism and tmf}, Bull. Sci. Math. 138 (2014), no. 8, 912--970 (\href{http://arxiv.org/abs/0912.4875}{arXiv:0912.4875}) \item C. Blanchet, N. Habegger, [[Gregor Masbaum]], [[Pierre Vogel]], \emph{Topological quantum field theories derived from the Kauffman bracket}, Topology Vol 34, No. 4, pp. 883-927 (1995) (\href{http://www.maths.ed.ac.uk/~aar/papers/bhmv.pdf}{pdf}) \end{itemize} More discussion in terms of bounding 4-manifolds is in \begin{itemize}% \item Thomas Kerler, \emph{Bridged links and tangle presentations of cobordism categories}. Adv. Math., 141(2):207--281, (1999) (\href{http://arxiv.org/abs/math/9806114}{arXiv:math/9806114}) \item Stephen F. Sawin, \emph{Three-dimensional 2-framed TQFTS and surgery} (2004) (\href{http://digitalcommons.fairfield.edu/cgi/viewcontent.cgi?article=1020&context=mathandcomputerscience-facultypubs}{pdf}) \end{itemize} and page 9 of \begin{itemize}% \item Stephen Sawin, \emph{Invariants of Spin Three-Manifolds From Chern-Simons Theory and Finite-Dimensional Hopf Algebras} (\href{http://arxiv.org/abs/math/9910106}{arXiv:math/9910106}). \end{itemize} and more discussion for 3-manifolds with boundary includes \begin{itemize}% \item Thomas Kerler, [[Volodymyr Lyubashenko]], section 1.6.1 of \emph{Non-semisimple topological quantum field theories for 3-manifolds with corners}, Lecture notes in mathematics 2001 \end{itemize} See also \begin{itemize}% \item [[Greg Kuperberg]], \emph{\href{http://mathoverflow.net/a/4389/381}{MO comment}} \end{itemize} [[!redirects 2-framing]] [[!redirects 2-framings]] \end{document}